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ABSTRACT 
Porous media are abundant in nature such as soil, rocks, 

sandstones, oil/gas//water reservoirs, biological tissue 

and organics, etc., and in many sciences and engineering 

applications. Since microstructures of porous media are 

extremely complicated, this makes very difficult to 

predict the transport properties such as thermal 

conductivities and permeabilities of porous media by 

analytical solutions based on Euclid geometry. Usually,  

numerical simulations such as control volume method, 

molecular dynamics and Lattice Boltzmann method are 

often applied. However, results numerical simulations 

are often correlated as empiric expressions which usually 

contain one or more empiric constants. Fortunately, 

many researchers found that the microstructures of 

porous media have the fractal characters, and transport 

properties such as thermal conductivities, permeabilities, 

and gas diffusion coefficients in porous media could be 

found by applying the fractal geometry theory and 

technique. In this review, the fractal geometry theory 
combined with the Monte Carlo method are summarized, 

and then the current research progresses in several areas 

are reviewed, including in the areas of permeabilities, 

thermal conductivities, thermal conductivities of 

nanofluids, rough surfaces, gas diffusivities and boiling 

heat transfer etc. Finally, some comments are made 

regarding the future possible applications.  

 

Keywords: Fractal, Monte-Carlo Method, Porous media, 

Transport properties. 

 

INTRODUCTION 
Transport properties such as permeability, thermal 

conductivity, electric conductivity and diffusivity in 

porous media, both saturated and unsaturated, have 

received steadily attention in the past decades. Since the 

microstructures of real porous media are usually 

disordered and extremely complicated, this makes it very 

difficult to analytically find the transport properties of 

porous media. Conventionally, transport properties of 

porous media were found by experiments [1-4] and 

numerical simulations such as the lattice gas (LG) [5], 

Lattice Boltzmann method (LBM) [6-7], finite element 

method [8-9] and commercial CFD soft wares (such as 

the fluent flow solver [10], and these simulations were 

based on Euclid geometry.  

However, the results from either experiments or 

numerical simulations based on Euclid geometry are 

usually expressed as correlations with one or more 

empirical constants, and the mechanisms behind these 

empirical constants are not revealed. Therefore, seeking 

an analytical solution of transport properties of porous 

media becomes a challenging task. 
Fortunately, it has been shown that natural porous 

media and some synthetic materials have been proved to 

be fractal objects [11-15].  

In the past three decades, fractal geometry and 

technique have received considerable attention due to its 

wide applications in sciences and technologies such as 

physics, mathematics, geophysics, oil recovery, material 

science and engineering. In this mini-review, recent 

advances are summarized in the area of transport 

properties of fractal porous media by fractal-Monte Carlo 

theory and technique, including a brief summary of the 

fractal-Monte Carlo theory and technique, and their 

applications. A few of comments is made with respect to 

the theoretical studies in the future. In the next section, 

the fractal-Monte Carlo theory for porous media is 

summarized first. 

 

NOMENCLATURE 
A = Cross-sectional area 

b = Second Letter in English Alphabet  

d            =             The Euclidean dimension 

fD         =           Fractal dimension for pore space 

TD        =           Fractal dimension for tortuosity 

G            =             Geometry factor 

K            =             Permeability  

L            =             Length 

N            =             Number of pores/particles 
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P             =             Pressure 

q             =             Flow rate through a capillary 

Q            =             Total flow rate through a set of fractal  

Capillar ies 

R            =              Random number 

 

Greek Symbols 

  = Diameter of pore or particle 

  = Effective porosity 

 

Subscripts 

av           =            Average 

max = Maximum 

min =            Minimum 

p           =             Pore 

 

1 Theory for Fractal-Monte Carlo method 

for porous media  
The size distribution of pores or particles in porous 

media exhibits the fractal scaling law as [14,15] 

max( ) ( / ) fD
N L                                              (1) 

where 
fD  is the fractal dimension for pores/particles, 

21  fD   (or 3) in two (or three) dimensions, and 

max  is the maximum pore/particle diameter. Eq. (1) 

describes that the cumulative number of pores/particles, 

whose sizes (L) are greater than or equal to the diameter 

 , follows the scaling law by Eq. (1). 

Eq. (1) can be considered as continuous and 

differentiable function, differentiating equation (1) with 

respect to   results in the number of pores/particle 

whose sizes are within the infinitesimal range   to 

 d , i.e. 

 dDdN ff DD

f

)1(

max


                                           (2) 

where 0d  and 0 dN . 

The total number of pores/particles, from the 

smallest diameter min  to the largest diameter max , 

can be obtained from Eq. (1) as  

min max min( ) ( / ) fD

tN L                                             (3) 

Dividing Eq. (2) by Eq. (3) gives 
( 1)

min/ ( )f fD D

fdN N D d f d    
 

                          (4) 

where )1(

min)(


 ff DD

fDf   is the probability density 

function and 0)( f .  

Patterned after the probability theory, the 

probability density function )(f  should satisfy the 

following normalization relationship, i.e. 

 
max

min
min max( ) 1 / 1fD

f d



                             (5) 

Eq. (5) shows that Eq. (5) holds if and only if [16] 

 min max/ 0fD
                                                          (6) 

is satisfied. Eq. (6) implies that 
maxmin    must be 

satisfied for fractal analys is of a porous medium, and Eq. 

(6) can be considered as a criterion whether a porous 

medium can be characterized by fractal theory and 

technique.  

The cumulative probability (R) in the range of 

 ~min
 can be found by 

 
min

min( ) ( ) 1 / fD
R f d




                              (7) 

Eq. (7) indicates that R = 0 as 
min   and 1R  as 

max  . Since the pore size   in a porous medium is 

randomly distributed in the range of 
maxmin ~  , R in 

Eq. (7) is in the range of 0~1. This corresponds to a set 

of random numbers of 0~1. 

From Eq. (7), we can obtain  

 1 / fD

minR                                                            (8) 

From Eq. (8), the diameter   of a pore/particle can be 

rewritten as  

1
(1 ) f

min

/D
R


 



                                                                (9) 

where 
maxmin   . Eq. (9) is a probability model 

for pore/particle size in simulations. For the thi  pore or 

capillary/particle chosen randomly, Eq. (9) can be written 

as [17] 
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where i = 1 ,2, 3, …, J, and J is the total number of 

Monte Carlo simulations in one run for a given porosity. 

Eq. (9) or (10) presents an explicit model for pore size 

distribution in porous media. Eq. (10) denotes that since 

iR  is a random number of 0~1 produced by computer, 

thus, the pore size i  is determined randomly, and this 

also simulates the randomness and fractal distribution of 

pore/particle sizes in porous media. Because Eq. (10) is 
based on Eq. (1), the pore/particle sizes are not only 

randomly distributed but also follow the fractal scaling 

law Eq. (1).  

In Eq. (10) the fractal dimension 
fD  for saturated 

porous media is given by [16] 

ln

ln( / )
f

min max

D d


 
                                           (11) 

where   is the effective porosity of porous media, d is 

the Euclidean dimension, and d = 2 and 3 refer to the 

two- and three-dimensional spaces, respectively. 
Eqs. (1)-(11) form the theoretical base of the 

Fractal-Monte Carlo method for simulations of transport 

properties in porous media, and this will be reviewed in 

the next section. 

 

2 Applications of the Fractal-Monte Carlo 

method 



2.1 Applications in permeabilites in fractal porous 

media 

The permeability is usually determined by Darcy’s 

law: 

K P
Q A

L


                                                                   (12) 

where Q, A, K, P , L and   represent the fluid flow 

rate, cross sectional area, permeability, pressure drop, 

distance and fluid viscosity, respectively.  

The fluid flow rate through a tortuous capillary is 

described by modifying the well known Hagen-Poiseulle 

equation [18] as  








4

)(
)(

tL

P
Gq


                                                       (13) 

where G is the geometry factor for flow through a 

capillary, and )(Lt   is the tortuous length along of a 

capillary and can be given by [14,15] 

TT DD
t LL 0

1
)(


                                                       (14) 

where 
TD  is the tortuosity fractal dimension with 

2D1 T   (or 3) in two (or three) dimensions and 
0L  is 

the straight distance along the flow direction. 

    The total flow rate Q for flow through a unit cell with 

total cross-sectional area A can be obtained by adding the 

individual flow rates, )( iq  . Based on Eqs. (10) and 

(13), the total flow rate Q can be obtained as  
1
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where 0L  is the representative length of a unit cell and 

approximated by  

AL 0                                                                      (16) 

Eq. (16) implies that a cubic sample is assumed. 

Comparing to Darcy’s law, we obtain the 

permeability expression as follows: 
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Due to Eqs. (10) and (16), Eq. (17) can be rewritten as 
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Eq. (18) is the probability model for the effective 

permeability. Eq. (18) indicates that the permeability is a 

function of parameters A, min , 
m ax , 

TD , 
fD  and 

random number iR . Once the parameters A, m in , 

m ax , TD  and 
fD  are determined, the permeability K 

can be calculated by Monte Carlo simulation through 

choosing a set of random numbers, iR , i = 1, 2, 3, ... J.  

The total cross sectional area A (in Eq. (18)) of a 

unit cell is related to porosity by  

/pAA                                                                   (19) 

where 
pA  is the total pore area in a unit cell and 

determined by 




J

i
i

J

i
ip aA

1

2

1

4/                                              (20) 

where ia  is the area of cross section of the 
thi  capillary 

chosen by Monte Carlo simulation through Eq. (10). It 

can be seen that the total cross sectional area A in this 

model can be determined by Eqs. (19) and (20) by the 

Monte-Carlo method if porosity   is given.  

The fractal dimension  
TD  for tortuous capillaries is 

usually determined by the box-counting method [19] or 

by [20]    
 0 min

ln [ ( 1)] /
1

av f T f

T

D D D
D

ln L





 
                   (21) 

where av  is the average tortuosity for tortuous flow 

paths, which can be determined by [21] 
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          (22) 

The fractal dimension  
TD  for tortuous 

streamlines/capillar ies can be also determined by [22]  

0

ln
1

ln( / )

av
T

av

D
L




                                                     (23) 

where 
av  is the average diameter of capillaries and can 

be found from [36]. 
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     The above Eqs. (13)-(24) form the probability model 

for the effective permeability of porous media. 

 

2.2 The Algorithm for the effective permeability 

The algorithm for determination of the permeability 

of a porous medium is summarized as follows: 

1. Given a porosity  , determine 
fD  from Eq. (11) if 

maxmin /  is determined; or determine 

maxmin /  if fD  is determined. 

2.  After maxmin /  is found, find max  if min  is 

known. 

3. Produce a random number iR  of 0~1 by the Monte-

Carlo method. 

4. Calculate i  by Eq. (10) and find 
pA  from Eq. (20). 

5. If max i , return to procedure 4, otherwise 

continue to the next step. 



6. Find A from Eq. (19). 

7. Find 0L  from Eq. (16). 

8. Find av  from Eq. (24) and find av  from Eq. (22), 

then find 
TD  from Eq. (23). 

9. Calculate the permeability K from Eq. (18). 

Steps 4~9 are repeated for calculation of 

permeability until a converged value is obtained at a 

given porosity. Step 5 means that the randomly produced 

pore size i  in Monte Carlo simulation is not allowed to 

exceed the maximum pore size max  in order to 

coincide with physical situation.  

The convergence criterion is that when the 

following condition is satisfied,  

AAA pJ  /                                                            (25) 

stop the simulation and record the final/convergent 

permeability and the total simulated number (J) in one 

run for a given porosity. In Eq. (25), JA  is the total area 

calculated after the thJ  computation in one run and A is 

given by Eq. (19). If the converged permeability is 

obtained in one run, set the permeability as 
nK  (n =1, 2, 

3,….N). Then the averaged permeability for a given 

porosity can be calculated by 




N

n
nK

N
K

1

1                                                           (26) 

where N is the total number of runs at a given porosity. 

  Figure 1 shows the simulated permeabilities by the 

Monte Carlo method in 1000 runs at porosity 0.60 for a 

bi-dispersed porous medium [17]. It is seen that the pores 

are randomly chosen, and the rough fluctuations of the 

permeabilities are observed. The converged 

permeabilities can be obtained as long as the enough 

number of runs of simulations is performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The simulated permeabilities by the Monte 

Carlo method in 1000 runs at porosity 0.60. 

 

In this Monte Carlo simulation, there is no empirical 

constant involved and every parameter in the simulation 

has clear physical meaning. 

 

2.3 Other applications  

Xiao et al. [23] applied the fractal-Monte Carlo 

method to predict the relative permeability of unsaturated 

porous media by considering the effect of capillary 

pressure, saturation, and tortuosity of capillar ies.  

Xu et al. [24] simulated the plane-radial seepage 

flow toward a well in fractured reservoir engineering. 

Vadapalli et al. [25] also applied the fractal-Monte Carlo 

method to estimate the permeabilities at different zones 

of sandstone reservoirs in India.  

In addition, this method was applied to simulate 

thermal conductivities of nanofluids [26], electrical 

properties [27], and modeling of rough surfaces [28].  

 

CONCLUSIONS 
In this min-review, the Fractal-Monte Carlo method 

has been reviewed regarding its theoretical basis and 

algorithm as well as its applications in simulations of the 

permeability, thermal conductivities of nanofluids, 

dielectric constant of porous ultra low-k dielectrics, and 

roughened surfaces. It is expected that this method may 

also have the potential in other applications such as 

thermal conductivity and electric conductivity of 

saturated and unsaturated fractal porous media, transport 

properties of fractured media, heat transfer of dropwise 

condensation on surfaces, boiling heat transfer, radiation 

heat transfer on fractal surfaces etc. 
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