Kinetic behaviour of biomass mixtures during torrefaction and steam gasification

Elvira Rodriguez
CEA

C. Dupont
CEA

D. Da Silva
CEA

Perez Labalette
CEA

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv

Recommended Citation
Kinetic behaviour of biomass mixtures during torrefaction and steam gasification

E. Rodriguez Alonso, C. Dupont, D. Da Silva Perez, F. Labalette

BIOENERGY IV CONFERENCE
Tuesday, 12th June 2013
The process: from biomass to fuel

Lignocellulosic biomass

Collection → Pretreatment → Gasification → Post-treatment → Synthesis

Feedstock / process interface

Syngas (H₂, CO)

• Liquid fuel (Diesel Fischer-Tropsch, MeOH)
• Gaseous fuel (SNG, H₂)

Suitability is crucial for industrialization
Feedstock/process suitability

- To improve feedstock/process suitability → two issues:

 - **Quantity**
 - Limited
 - Can vary along the year

 - **Quality**
 - Properties intrinsically variable
 - Can vary along the year

SOLUTION?
A solution: biomass blends

Biomass blends

Reactor design

Feedstock thermal behaviour

Nevertheless... so far:

- No characterization
- No modelling

of thermal behaviour of biomass blends
Phenomenology

Drying
50-100°C

Torrefaction
200-300°C

Steam gasification
800-1500°C

Biomass $C_6H_9O_4$ + moisture: 20%

Biomass $C_6H_9O_4$ + moisture: 0%

Torrefied biomass $C_6H_8O_3$

Pyrolysis

Char (mainly C)

Steam gasification

H_2, CO

Syngas

Volatile matter:
- Gas (CO, CO$_2$)
- Condensable species (H$_2$O, carboxylic acids...)

Limiting steps:
Kinetic study

Volatile matter:
- Gas (H$_2$, CO, CO$_2$, CH$_4$...)
- Condensable species (H$_2$O, tars)
Objective and working plan

Objective:
- study biomass blends kinetics during torrefaction and steam gasification of char
- check existence/lack of additive law

Working plan:
- Lab-scale experimentation → thermobalance
 - Torrefaction → non-reactive atmosphere
 - Steam gasification → reactive atmosphere
- Kinetic modelling
Torrefaction: experimental device

CHEMICAL REGIME

Temperature program

- **Mass (%)**
- **Temperature (°C)**
 - 105°C
 - 300°C
 - 3 hours

Sample nature	Beech/wheat straw blend
Blend ratio | 25/75, 50/50, 75/25
Sample mass | 5 mg
Particle size | <200µm
Flow gas | N₂

Bioenergy IV, Otranto – June, 12th 2013
Torrefaction: kinetic modelling

Comparison 50% beech-50% wheat straw model and experimental blend

\[\Delta m_{\text{BLEND}} = \Delta m_{\text{BIOMASS 1}} \cdot \%_{\text{BIOMASS 1}} + \Delta m_{\text{BIOMASS 2}} \cdot \%_{\text{BIOMASS 2}} \]
Steam gasification: experimental device

Slow pyrolysis

<table>
<thead>
<tr>
<th>Sample nature</th>
<th>Beech/ wheat straw blend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blend ratio</td>
<td>25/75, 50/50, 75/25</td>
</tr>
<tr>
<td>Temperature</td>
<td>450°C</td>
</tr>
<tr>
<td>Time</td>
<td>4h</td>
</tr>
<tr>
<td>Flow gas</td>
<td>(\text{N}_2)</td>
</tr>
</tbody>
</table>
Steam gasification: experimental device

- **Sample mass**: 5 mg
- **Atmosphere**: H$_2$O
- **Temperature**: 800°C
- **P$_{H2O}$**: 0.2 bar
Steam gasification: experimental device

\[\text{N}_2 \quad \text{H}_2\text{O} + \text{N}_2 \]

Time (s) vs. Mass (mg)

0 \quad 6000

800
Steam gasification: kinetic modelling

Average reaction rate 1-80%

\[r_{1-80\%} = \frac{\int_{t_{X=0.01}}^{t_{X=0.80}} r(t) \, dt}{t_{X=0.80} - t_{X=0.01}} \]

ADDITIVE LAW \(\Rightarrow \) globally valid... ✓
Steam gasification: kinetic modelling

Comparison 25% beech-75% wheat straw model and experimental blend

...but in detail → ADDITIVE LAW
Steam gasification: kinetic modelling

Comparison 75% beech-25% wheat straw model and experimental blend

ADDITIVE LAW

Bioenergy IV, Otranto – June, 12th 2013
Steam gasification: kinetic modelling

Rate evolution
- At low conversions: Constant
- At high conversions: Moderate decrease

Wrong!

Agricultural biomass

Bioenergy IV, Otranto – June, 12th 2013
Steam gasification: kinetic modelling

Experimental curve is accelerated comparing to model

Synergetic effect linked to inorganic matter?

Parameter to be considered: \((K/Si)\)

\[
(K / Si)_{BLEND} = \frac{\%_{BEECH} \cdot K_{BEECH} + \%_{WHEATSTRAW} \cdot K_{WHEATSTRAW}}{\%_{BEECH} \cdot Si_{BEECH} + \%_{WHEATSTRAW} \cdot Si_{WHEATSTRAW}}
\]
Conclusions and outlook

Conclusions
- Torrefaction \rightarrow ADDITIVE LAW
- Steam gasification \rightarrow NO ADDITIVE LAW \rightarrow $(K/Si)_{\text{BLEND}}$ to be considered

Outlook
- Model biomass blends behaviour \rightarrow inorganic matter influence in steam gasification \rightarrow parameters
- Other ratios
- Other types of biomass
We are in Grenoble!

If you have any questions or want more details, please contact:

elvira.rodriguez@cea.fr

capucine.dupont@cea.fr

GRAZIE MILLE!! THANK YOU!!
MERCI BEAUCOUP!! MUCHAS GRACIAS!!