Engineering Conferences International ECI Digital Archives

International Workshop on the Environmental Damage in Structural Materials Under Static Load/ Cyclic Loads at Ambient Temperatures

Proceedings

6-2-2016

Understanding small crack effects on failure & threshold diagrams

Daniel Kujawski Western Michigan University, daniel.kujawski@wmich.edu

Follow this and additional works at: http://dc.engconfintl.org/edsm Part of the <u>Engineering Commons</u>

Recommended Citation

Daniel Kujawski, "Understanding small crack effects on failure & threshold diagrams" in "International Workshop on the Environmental Damage in Structural Materials Under Static Load/Cyclic Loads at Ambient Temperatures", A.K. Vasudevan, Office of Naval Research (retired), USA Ronald Latanision, Exponent, Inc., USA Henry Holroyd, Luxfer, Inc. (retired) Neville Moody, Sandia National Laboratories, USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/edsm/25

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in International Workshop on the Environmental Damage in Structural Materials Under Static Load/Cyclic Loads at Ambient Temperatures by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

College of Engineering and Applied Sciences

Crack Length Effects on Failure and Threshold Diagrams

Daniel Kujawski

Western Michigan University

Mechanical and Aerospace Engineering

Acknowledgments

This research is supported by the ONR grant: N000141010577. Thanks to Dr. Vasudevan for his fruitful inputs and discussions.

INTERNATIONAL WORKSHOP

on Stress Assisted Environmental Damage in Structural Materials Cork, Ireland 29th May – 3rd June 2016

Crack length effects on fatigue threshold stress

Schematic of Kidagawa-Takahashi diagram

Crack length effects on fatigue threshold stress

Schematic of Kidagawa-Takahashi diagram

El Haddad's model

$$a_{eff} = a + a_0$$

where

$$a_0 = \frac{1}{\pi} \left(\frac{\Delta K_{TH}}{\Delta S_{FL}} \right)^2$$

(a curve fitting approach)

Crack length effects on failure stress

Crack length effects on failure stress

(log-log plot resembles Kitagawa-Tagahashi diagram)

Common characteristics of crack length effects

Threshold stress

Fracture stress

Note:

Crack length, a (mm)

Both a_t and a_0 represent a "length dimension" which scales the transition from SIF to applied stress behavior.

Damage transition from SIF to applied stress long cracks transition to short cracks

Irwin's plastic zone correction

Irwin's plastic zone correction

For plain stress

Note that $2r_{0\sigma} = a_t$

Note:

Transition crack length a_t is equal to plastic zone size $2r_{\theta\sigma}$ at K=K_C

F(α =a/b) Correction factor for final width

$$K_{Irwin} = F(\alpha_{eff}) S \sqrt{\pi} a_{eff}$$
$$F = \frac{1 - 0.5 \alpha + 0.326 \alpha^2}{\sqrt{1 - \alpha}}$$

where $\alpha = a/b$

Using Irwin's plastic zone correction

Yield zone photographs of thin cracked steel sheet

AM350CRT steel, t = 0.508 mm, σ_0 = 1,383 MPa, σ_u = 1,456 Mpa,

S = 264.8 MPa K = 71.5 MPa m^{0.5} a = 63.5 mm

S = 501.3 MPa K = 145.2 MPa m^{0.5} a = 63.5 mm

S = 693 MPa K = 208 MPa m^{0.5} a = 72.9 mm

Forman (1966)

Strip-yield model (Dugdale-Barenblatt, 1962)

This traditional use of $a_{eff} = a + \rho$ from strip-yield model overestimates K_{eff} since is not accounting for the effect of compressive σ_0 stresses. Accounting for compressive σ_0 Burdekin and Stone (1966) $K_{eff BS} = \sigma_0 \sqrt{\pi a} \left[\frac{8}{\pi^2} \ln \sec \left(\frac{\pi \sigma}{2 \sigma_0} \right) \right]^{0.5}$ Note: $K_{eff BS} < K_{eff DB}$

Comparison of different plasticity correlations

For SSY El Haddad's approach is equivalent to the yield-strip model since

$$a_{eff} = a + a_t \cong a + \rho$$

 Irwin's and Budekin & Stone's are equivalent for a > a_t

Modified strip-yield model

Setting
$$a_{eff} = a + \rho/2$$

$$K_{eff} = S_{\sqrt{\frac{\pi a}{2} \left(\sec \frac{\pi S}{2\sigma_0} + 1 \right)}}$$

Experiments vs. Different plasticity corrections

Normalized gross failure stress, S_f/σ_0 Experiment vs. predictions for a=a_t=5.17 mm

NASA data on Ti & Al alloys

Materials & Specimens

- Ti-5Al-2.5Sn & 2014-T6
- Thin plates with through thickness cracks
- Specimens' thicknesses t = 1.5 to
 2.9 mm

• Test Procedure

- Precraced in fatigue to different crack length
- Fractured under monotonic load
- Tested at different temperatures: from RT to – 254°C

Experiments vs. Predictions

Ti-5Al-2.5Sn plate t = 2.9 mm

Experiments vs. Predictions 2014-T6 Al plate t = 1.5 & 1.7 mm

Experiments vs. Predictions 2014-T6 Al plate t =1.7 mm

Can this be used for SCC?

ALCOA breaking load method for assessing SCC resistance

Materials & Specimens

- 7075-T651, 7075-T7X1, 7075-T7X2
- Round, smooth dog-bone specimens
- Two diameters d=3.18 & 5.72 mm were used

Test Procedure

- Exposed to 3.5% NaCl for different duration
- Then monotonically loaded to fracture at air
- Fracture stress and the actual deepest SCC flaw was measured from fracture surface

Typical surface attack and fracture surface

Typical surface attack in the three tempers of 7075 plate exposed to 3.5% NaCl solution by alternate immersion

Fracture surface with border of stress corrosion flaw outlined

7075-T7651, 5.17 mm diameter specimen Exposed 9 days at 276 MPa, fractured stress 324.1 MPa

Fracture stress vs. SCC flow depth relationship

Application of SCC diagram to design

Application of SCC diagram to design

Application of SCC diagram to design

Conclusions

- Design diagram for failure stress and SCC is proposed which consists of:
 - SCC threshold curve
 - Final fracture curve
 - Both curves have common characteristics
- Proposed approach accounts for inter-relations among:
 - Environment
 - Applied stress
 - Crack and/or SCC flaw size

College of Engineering and Applied Sciences

Thank You

Albert Einstein 'Between Theorems'

GROUNDED IN MICHIGAN REACHING FOR THE FUTURE

180

Back-up Slides

Fracture stress vs. SCC flow depth relationship

Fracture stress vs. SCC flow depth relationship

Ratios of σ_0/σ_u for Ti and Al alloys

Alloy	Temp (°K)	σ ₀ (MPa)	σ _u (MPa)	s"/s _o
Ti-5Al-2.5Sn t=1.6 mm	300	821	887	1.08
	77	1330	1390	1.05
	20	1570	1710	1.09
Ti-5Al-2.5Sn t=1.6 mm	300	727	785	1.08
	77	1230	1300	1.06
	20	1450	1540	1.06
2014-T6 Al t=1.6 mm	300	448	499	1.11
	77	519	598	1.15
	20	554	687	1.24