Microstructural stability of Co-Re-Cr-Ta-C alloy strengthened by TaC precipitates

Debashis Mukherji
Technische Universität Braunschweig, Institut für Werkstoffe, Germany, d.mukherji@tu-bs.de

Ralph Gilles
TU Munich, FRM II, Garching, Germany

Lukas Karge
TU Munich, FRM II, Garching, Germany

Pavel Strunz
NPI, Rez near Prague, Czech Republic

Přemysl Beran
NPI, Rez near Prague, Czech Republic

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/superalloys_ii

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Beyond Nickel-Based Superalloys II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Debashis Mukherji, Ralph Gilles, Lukas Karge, Pavel Strunz, Přemysl Beran, and Joachim Röslер

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/superalloys_ii/25
Microstructural stability of Co-Re-Cr-Ta-C alloys strengthened by TaC precipitates

Debashis Mukherji, Niklas Wagener and Joachim Rösler *(TU Braunschweig, Braunschweig, DE)*

Ralph Gilles and Lukas Karge *(TU Munich, Garching, DE)* | Pavel Stunz and Přemysl Beran *(NPI, Rez near Prague, CZ)*

Beyond Ni-based Superalloy II | Clare College Cambridge UK | 17-21 July.2016
Co-Re-based alloys: for high temperature gas turbine applications

• Present Status of Co-Re alloy development
 • alloy development concept

• Microstructural stability
 • Co-matrix transformation: $\varepsilon \Leftrightarrow \gamma$
 • TaC precipitates

• Creep properties

• Outlook
Co-Re alloy concept

Melting range: Metallic Alloys “Beyond Ni-Base Superalloys”

Co-Re-Cr alloy melting range
~ 1523° to 1575°C

Considerably higher Melting Range than Ni-superalloys
Oxidation resistance: Co-Re-Cr-Si system

Good oxidation resistance up to 1100°C
Alloy strengthening: by carbides

Fine dispersion of carbides in alloys with Cr, Ta and C addition

Dislocations interacting with TaC precipitates

Carbides provide effective strengthening in Co-Re-Cr-Ta-C alloys
Design considerations: tcp phase

- Fine dispersion of σ phase in alloys can be achieved
- Can provide effective strengthening with high ductility

$> 20\% \text{ Cr addition stabilizes } \sigma \text{ phase (Cr}_2\text{Re}_3)$
Design considerations: grain boundaries in polycrystalline alloys

Polycrystalline Co-Re-Cr alloy is stronger than SX Ni-superalloys

Boron addition mitigates environment embrittlement and improves ductility

Graph:
- **Tensile Test at room temperature**
 - **X-axis:** Strain (%)
 - **Y-axis:** Stress (MPa)
 - **Lines:**
 - Co-17Re-23Cr
 - Co-17Re-23Cr + 500 wt.ppm B

Table:

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Density (ρ) g/cc</th>
<th>UTS (σ) MPa</th>
<th>Specific Strength (σ/ρ)</th>
<th>Ductility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-17Re-23Cr + 500B</td>
<td>11.5</td>
<td>1276</td>
<td>110.9</td>
<td>20.3</td>
</tr>
<tr>
<td>CMSX4</td>
<td>8.7</td>
<td>894</td>
<td>102.7</td>
<td>22</td>
</tr>
</tbody>
</table>
Co-Re-based alloys: for high temperature gas turbine applications

- Present Status of Co-Re alloy development
 - alloy development concept

- Microstructural stability
 - Co-matrix transformation: \(\varepsilon \Leftrightarrow \gamma \)
 - TaC precipitates

- Creep properties

- Outlook
Microstructural stability:

- In order to study TaC precipitates Co-Re-Ta-C alloys investigated [C/Ta – 0.5y to 1.0y]
- This ensured no σ phase and Cr-carbides in the alloy
- Study – TaC morphology and stability and Co matrix transformation
- Binary TaC is stable to very high temperatures but in Co-Re system its stability not investigated
- Binary TaC is not a stoichiometric compound and exists in wide composition range
- Other Ta-carbides can be also stable in this composition range
Co matrix transformation: ϵ (hcp) $\Leftrightarrow \gamma$ (fcc)

Transformation:

On heating – Co (hcp) \rightarrow SF + MT \rightarrow Co (fcc)

On cooling – Co (fcc) \rightarrow SF + MT \rightarrow Co (hcp)

Co-17Re-1.2Ta-1.2C (1.0y) alloy ST + 1100°C

Lower C/Ta ratio in the alloy higher Transformed region

Co-17Re-1.2Ta-0.6C (0.5y) alloy ST + 1100°C
Co matrix transformation: ε (hcp) \leftrightarrow γ (fcc)

EBSD

Co-17Re-1.2Ta-1.2C (1.0y) alloy ST + 1100°C

Transformed region is a mixture of ε + γ phases
Co matrix transformation: \(\varepsilon \) (hcp) \(\rightleftharpoons \) \(\gamma \) (fcc)

- **EBSD**
 - Transform region I
 - Transform region II

- **Co-17Re-1.2Ta-1.2C (1.0y) alloy ST + 1100°C**

- **Transformation**
 - Region I (\(\varepsilon \) Co + SF and MT)
 - Region II (\(\varepsilon \) Co + \(\gamma \) Co)

Transformation occurs through SF and MT formation
Co matrix transformation: ε (hcp) \Leftrightarrow γ (fcc)

EDS

Co-17Re-1.2Ta-0.8C (0.7y) alloy ST + 1000°C

Microstructural Stability

Transformed regions are rich in Co and **Un-transformed regions** rich in Re
Co matrix transformation: ε (hcp) \Leftrightarrow γ (fcc)

In-situ neutron diffraction

- γ Co (200) peak evolution during heating and cooling
- Left side alloys with Cr and right side alloys without Cr
- γ Co retained to RT in alloys without Cr
- Metastable γ Co transform to stable ε Co on heating (see hold at 900°C)
- Allotropic $\varepsilon \Leftrightarrow \gamma$ Co transformation occurs above 1100°C.

\(\gamma\) Co (200) peak

- C/Ta -0.9
- + 15Cr
- + 5Cr
- C/Ta -0.5
Co matrix transformation: ε (hcp) \Leftrightarrow γ (fcc)

- Co has allotropic transformation from ε (hcp) to γ (fcc) phase.
- In pure Co it is at 417°C.
- The transformation is composition dependent.
- In Co-Re alloys the transformation temperature is high > 1000°C.
TaC precipitates: morphology and stability

Microstructural Stability

Low C alloys:
100% Transformed Matrix

Co-17Re-1.2Ta-1.2C (1.0y) alloy ST + 1100°C
High C alloys:
Large Cuboidal TaC

Co-17Re-1.2Ta-0.6C (0.5y) alloy ST + 1100°C

Low C alloys:
100% Transformed Matrix

High C alloys:
Large Cuboidal TaC
A wide variety of TaC precipitate morphology is possible.

A very fine dispersion of TaC (less than 10 nm spherical particles)
TaC precipitates: morphology and stability

A wide variety of TaC precipitate morphology is possible.

Short and long needle-like TaC precipitates.
A wide variety of TaC precipitate morphology is possible

Relatively coarse and also lamellar TaC precipitates
Co matrix transformation affects TaC precipitates
Some Recent Results: synchrotron measurements

In-situ diffraction show TaC precipitates are stable up to 1200°C

Long term microstructural stability during application in gas turbine is very important.

Some Recent Results: neutron measurements

In-situ SANS show TaC precipitates remain fine (< 100 nm)

Creep Results: compression creep

- only few precipitates
- fine precipitates

TaC precipitates provide creep strengthening
Creep Results: compression creep

- High C alloys had higher amounts of TaC phase
- Low C alloys had finer TaC precipitates

TaC precipitates morphology and size can be tailored through heat treatment
Summary & Outlook

- Co-Re alloys show great potential for development and in-situ measurements with synchrotron and neutron provide tools for understanding the alloy system.
- TaC precipitates are effective in providing high temperature strengthening.
- Co matrix transformation can be exploited in tailoring microstructure and precipitate dispersion, however, the transformation temperature should be pushed to temperature higher than the envisaged application.

Outlook:

1. Directional solidification and single crystal growth studies are essential for blade application: *initial studies indicate there are significant challenges posed by the Co-matrix allotropic transformation.*

2. Oxidation resistance of Co-Re alloys must be improved to higher temperature: *investigation jointly with Universität Siegen is in progress.*
Acknowledgements

I would like to thank the following persons for their support and contribution to Co-Re alloy development -

Prof. Rösler (TU Braunschweig)
Dr Strunz, Dr Beran (NPI, Czech Republic),
Dr Gilles, Mr Karge, Dr Hofmann, Dr Hölzel (FRM II, Garching)
Dr Wanderka, Dr Schumacher (HZB, Berlin)
Dr Eckerlebe, Dr Stark, Dr Staron, Prof Pyczak (HZG Geesthacht)
Prof Heilmaier (Uni Magdeburg, KIT – Karlsruhe)
Dr Depka, Dr Somsen, Prof Eggeler (Rühr Universität Bochum)
Dr Hüttner, Dr Brunner, Dr Völkl, Prof Glatzel (Uni Bayreuth)
Dr Gorr, Ms Hennes, Dr Wang, Prof Christ (Uni Siegen)
Prof Krüger, (Uni Magdeburg)

also thanks to DFG for financial support and MLZ, HZG, HZB, NPI, BNC, PSI for beam time