Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV

Proceedings

9-19-2017

Introduction to H2020 project C3HARME: Next generation ceramic composites for combustion harsh environments and space

Diletta Sciti National Research Council of Italy, diletta.sciti@istec.cnr.it

Laura Silvestroni National Research Council of Italy

Luca Zoli National Research Council of Italy

Antonio Vinci National Research Council of Italy

Frederic Monteverde National Research Council of Italy

Follow this and additional works at: http://dc.engconfintl.org/uhtc_iv Part of the <u>Engineering Commons</u>

Recommended Citation

Diletta Sciti, Laura Silvestroni, Luca Zoli, Antonio Vinci, and Frederic Monteverde, "Introduction to H2020 project C3HARME: Next generation ceramic composites for combustion harsh environments and space" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV", Jon Binner, The University of Birmingham, Edgbaston, United Kingdom Bill Lee, Imperial College, London, United Kingdom Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/uhtc_iv/40

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

INTRODUCTION TO H2020 EU PROJECT C3HARME

Diletta Sciti, L. Silvestroni, F. Monteverde, A. Vinci, L. Zoli

National Research Council of Italy (CNR) Institute of Science and Technology for Ceramics Via Granarolo 64, 48018 Faenza (RA)

NEXT GENERATION CERAMIC COMPOSITES FOR COMBUSTION HARSH ENVIRONMENTS AND SPACE Launched in June 2016

H2020-NMP-2015-two-stage

NMP-19-2015 Materials for severe operating conditions, including added-value functionalities

Duration 48 months

Call

Topic

Budget € 8,033,034.97

STATISTICS

First stage:94 proposals – 14 passedSecond stage:2 funded project/142/94= 2% chance

www.c3harme.eu

HIGHLIGHTS

Objective

Create a new class of **out-performing materials**: **Ultra High Temperature Ceramic Matrix Composites (UHTCMCs)** based on C or SiC fibres/preforms enriched with ultra-high temperature ceramics (UHTCs) capable of overcoming limits of current materials

Applications

Aersopace > 2000°C, near-zero erosion nozzles inserts and near-zero ablation tiles for launch and re-entry

Expected Impact

Significant improvement in the performance of the existing materials in terms of **increased capability to withstand severe environments**, achieving also efficiency, reliability, cost-effectiveness and scalability

TRL

Capability to manufacture and test in relevant environment reaching TRL 5-6

CONSORTIUM -12 partners

Germany, Italy, Spain, UK, Ireland and Portugal

6 research institutions, 3 large end-users, 3 SMEs

Countries

Туре

Expertise

World class manufacturers: AVIO (propulsion systems) and AIRBUS-SL (space and defence solutions) Design and modelling of aeronautic/space systems: DLR, TCD, AVIO, HPS, AIRBUS-SL and AGI Advanced ceramic components providers: DLR, NANOKER and AGI Material and manufacturing process designers: CNR-ISTEC, UoB, TECNALIA, and DLR Advanced Characterization: UNINA, DLR, AVIO, UoB

(C) Istec

Large COMPANIES

Leading company in space propulsion Solid- and liquid-propellant propulsion

systems

End user Prototype demonstration in ground simulated environment

- A global leader in aeronautics, space and related services
- ✓ Around 136,600* employees
- ✓ Suppliers from more than 100 countries
- ✓ 2015 revenues of € 64.5 bn
- ✓ Headquartered in Toulouse

A global company located in

International sales 31% Europe 69% Non-Europe

End user

Material development

CMCs for Harsh environments in Aerospace Sector

CONSORTIUM

RESEARCH CENTRES

at 16 sites.

GERMAN AEROSPACE CENTER Institute of Structures and Design, Stuttgart Damage tolerant high performance material for complex structures in high temperatu and severe environments Institute of Aerodynamics and Flow Technology, Cologne

With its five wind tunnels is one of the key European institutions in the field of 8000 employees, 33 hypersonic and supersonic technologies institutes and facilities

TECNALIA is the first applied research centre in Spain and one of the most important in Europe with around 1.500 people on staff, 122€ millions turnover and more than 4,000 clients.

Research and Development Technological Center

Positioning between Fundamental Research (University) and Industrial Application (Company)

UNIVERSITIES

The combination of extreme temperature, chemically aggressive environments and rapid heating / cooling is beyond the capabilities of current engineering materials (C/C, C/SiC, UHTCs)

to overcome present technological limits, **novel materials** must be conceived, combining the best features of CMCs with those of UHTCs.

Methodology

Material Requirements & Design

END-USERS give a list of technical, economic and exploitation indicators and requirements to be met. On this basis, a collection of materials' specifications

Multiscale modelling

Aim: to orient the material development from the early stages, including characterisation and upscaling, with the aim of improving the cost/performance ratio.

Parameter-free density functional theory for understanding interfaces between materials, their performances under extreme conditions and their aging. Micro-models for chopped and continuous-fibre material with idealized microstructures where relevant properties are estimated from analytical or numerical (finite element) methods.

Numerical and analytical macro-models to predict the structural integrity of components during expositions and fluid-dynamic calculations to understand the aerothermal behaviour and predict the gas/surface reactivity.

Processing

Several technologies are available in C3HARME (sintering and non sintering), combination of conventional and novel processing methods. Selection of the resulting best processing routes dictated by the need for fast processing/cost effectiveness and performance.

Characterization assessment of the fundamental relationships properties / microstructure / process and validation in lab-level

Scale up and testing of components aerothermal and mechanical conditions similar to those found in industry, coupled to a relevant size of the component to be tested.

Work packages

WP	WP Title
WP1	Technical requirement definition & design of prototypes
WP2	Processing of UHTCMCs
WP3	Thermo-chemical/mechanical characterization of UHTCMCs in TRL 3,4 and modelling
WP4	Prototype manufacturing & Up-scaling of UHTCMCs
WP5	Prototype testing & validation (Propulsion and TPS)
WP6	Dissemination & Exploitation
WP7	Project Management
WP8	Ethical issues

GANNT Chart

today YEAR 1 **YEAR 2** YEAR 3 YEAR 4 **12** 14 16 18 20 21 **24** 25 28 30 33 **36** 40 42 44 46 **48** 3 5 6 8 4 WP1 •• **WP2** WP3 WP4 WP5 WP6 •• **WP7** WP8

Deliverables

Milestones

Definition of the best technologies

- н Α Ε Ν G Е S
 - Several technologies are available (sintering and non sintering), combination of conventional and novel processing methods
 - Selection of the
 - resulting best processing routes

OWN & CROSS PROCESSING

	with ISTEC	with TEC	with UoB	with DLR	with AGI
ISTEC does	Short fiber: milled (µm) and chopped (mm) Continuous fibers: UD, -0/90, 2D Hot pressing	Prepares fibers/powders mixtures and infiltrated preforms for SPS	Slury impregnation of 2.5 D preforms received from UoB for: - Sintering (ISTEC) - RFCVI (UoB)		Prepares slurries for filament winding to test in AIRBUS
TEC does	SPS of ISTEC chopped fiber mixtures and infilltrated preforms	Short fibers: MAX phases as matrix with milled fibers (µm) SPS			SPS of the porous C/SIC material after first pyrolsis.
UoB does	Tarch screening of ISTEC materials with SH phases (in progress)		RF-CVI on 2.5D, 3D preforms	C coating onto C fibers to protect during RMI	-Slurry Impregnation of 3D Cf preforms received from AGI and ZrB2 CVI densification -Torch tests of UHTC coated C/SIC
DLR does				RMI of preforms	
AGI does	Filament winding or textile combined with ISTEC slurries	Prepare & provide porous C/SIC material (after first pyrolysis) for SPS	AGI carbon fiber preforms (e.g. 2.5D, 3D) combined with UoB matrix infiltration / processing		PIP

Self healing capability

CHALLENGES

Definition

Self-healing materials are able to partially or completely repair a <u>damage</u> inflicted on them, restoring/regenerating the original <u>functionality</u>

Application	Identify the functionality	ldentify a damage	Envision a repairing mechanism	Determine the restored functionality
TPS	Load-bearing	Crack propagation	Close cracks	Above 90% retained max. load
Nozzle	Zero-erosion	Ablation/Oxidation	Form non-ablative stable, preferably solid, external oxide scales	R _M and R _L below a certain limit

 $R_{\mbox{\scriptsize M}}$: mass ablation rate, $R_{\mbox{\scriptsize L}}$: linear ablation rate

Preliminary screening of different SH phases Find a way to measure the SH functionality

Characterization of thermo-mechanical properties

Α

- Characterization at T >1500°C or higher difficult to н find
 - NEW Standards needed for these new materials

-	Con tinuou s Fibers								
E	Property	Temp eratu re	Who	Facility	Test type	Stan dard	Sample Shape	Dimension s	Atm.
	HV	RT	ISTEC	Zwickindenter		EN 843-4:2005	plate, bar	flexible	air
N	E	RT	DLR	Zwick		EN 658-1:1999	bar	10x 2.5x 60	air
						ISO 15733:2015			
G	o-bending	RT	DLR	Zwick	semi-articsteel	EN 658-3:2002	bar	10x 2.5x 60	air
•					4-pt. bend	ISO 17138:2014		(5x1.25x30)	
E	o-bending	HT @ 1600°C	DLR/ISTEC	INDUTHERM / MTS	c/c-sic	EN 658-3:2002 (RT)	bar	2.5x2x25	vacuum,
E					4-pt. bend	EN 12788:2005		10x 2.5x 60	Ar, air
	o-compr	RT	DLR	Zwick		EN 658-2:2003	cylinder, block	4x4x8	air
S						ISO 20504:2016		Ø4.5x8	
-	σ-compr	нт @ 1600° C	DLR	INDUTHERM / MTS		EN 658-2:2003 (RT)	cylinder, block	4x4x8	vacuum,
						ISO 14544:2013		Ø4.5x8	Ar, air
A grood standards and procedures			DLR	Zwick		EN 658-1:1999	flat strip	(5-10)×3×100	air
Ayreeu stanuarus anu	procedure	5				ISO 15733:2015		(6x2x70)	
	o-tension	HT @ 1600° C	DLR	IN DUTHERM / MTS		ISO 14574:2013	flat strip		vacuum,
								(5-10)×3×140	Ar, air
	σ-interlaminar shear	RT	DLR	Zwick	3-pt. bending	EN 658-5:2003	bar		air
					DNC	ISO 20505:2005		(5-10)×3×25	
	Kie	RT	DLR	Zwick	CNB 4-pt.bend	EN 14425-3	bar		air
					SEPB	ISO 15732:2003 (m)		4x3x45	
	Kie	HT @1500° C	DLR	IN DUTHERM / MTS	CNB 4-pt.bend	EN 14425-3 (RT)	bar	2.5×2×25	vacuum,
					SEPB	ISO 15732:2003 (m, RT)		4x3x45	Ar, air
•	∆Tc (Thermal Shock)	нт	DLR	Zwick	Water quench	EN 820-3:2004	plate, bar	2.5x2x25	vacuum,
									Ar, air
	Ктн	up to 1300° C	ISTEC (ext.)		Laser Flasch	ASTM E1451-11	cylinder	Ø5x1	Argon
	CTE	up to 1550° C	DLR			ISO 17562:2016	bar	2.5x2x25	Argon

Definition of prototypes and relevant testing conditions

- - final testing, starting form simple shaped prototypes

S

 Two applications and 4 different techonologies (potentially)

Ambition

Research and innovation to strengthen Europe's industrial capacities and business perspectives, including SMEs

Acknowledgements

This work has received funding from the European Union's Horizon 2020 "Research and innovation programme" under grant agreement N°685594 (C³HARME)

ISTEC coworkers: C. Melandri, D. Dalle Fabbriche, E. Landi, P. Galizia, S. Failla

