The CMC challenges in Developing an Oncolytic Immunotherapy

Colin Love
Amgen

Follow this and additional works at: http://dc.engconfintl.org/vaccine_iv

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
The CMC challenges in Developing an Oncolytic Immunotherapy

Colin Love,
VP, Clinical Operations

Vaccine Technology IV
May 22, 2012
Safe Harbour Statement

This presentation contains forward-looking statements that are based on management's current expectations and beliefs and are subject to a number of risks, uncertainties and assumptions that could cause actual results to differ materially from those described. All statements, other than statements of historical fact, are statements that could be deemed forward-looking statements, including estimates of revenues, operating margins, capital expenditures, cash, other financial metrics, expected legal, arbitration, political, regulatory or clinical results or practices, customer and prescriber patterns or practices, reimbursement activities and outcomes and other such estimates and results. Forward-looking statements involve significant risks and uncertainties, including those discussed below and more fully described in the Securities and Exchange Commission (SEC) reports filed by Amgen, including Amgen's most recent annual report on Form 10-K and most recent periodic reports on Form 10-Q and Form 8-K. Please refer to Amgen's most recent Forms 10-K, 10-Q and 8-K for additional information on the uncertainties and risk factors related to our business. Unless otherwise noted, Amgen is providing this information as of November 18, 2010, and expressly disclaims any duty to update information contained in this presentation.

No forward-looking statement can be guaranteed and actual results may differ materially from those we project. The Company's results may be affected by our ability to successfully market both new and existing products domestically and internationally, clinical and regulatory developments (domestic or foreign) involving current and future products, sales growth of recently launched products, competition from other products (domestic or foreign), difficulties or delays in manufacturing our products. In addition, sales of our products are affected by reimbursement policies imposed by third-party payors, including governments, private insurance plans and managed care providers and may be affected by regulatory, clinical and guideline developments and domestic and international trends toward managed care and health care cost containment as well as U.S. legislation affecting pharmaceutical pricing and reimbursement. Government and others' regulations and reimbursement policies may affect the development, usage and pricing of our products. Furthermore, our research, testing, pricing, marketing and other operations are subject to extensive regulation by domestic and foreign government regulatory authorities. We or others could identify safety, side effects or manufacturing problems with our products after they are on the market. Our business may be impacted by government investigations, litigation and products liability claims. Further, while we routinely obtain patents for our products and technology, the protection offered by our patents and patent applications may be challenged, invalidated or circumvented by our competitors. We depend on third parties for a significant portion of our manufacturing capacity for the supply of certain of our current and future products and limits on supply may constrain sales of certain of our current products and product candidate development. In addition, we compete with other companies with respect to some of our marketed products as well as for the discovery and development of new products. Discovery or identification of new product candidates cannot be guaranteed and movement from concept to product is uncertain; consequently, there can be no guarantee that any particular product candidate will be successful and become a commercial product. Further, some raw materials, medical devices and component parts for our products are supplied by sole third-party suppliers. This presentation includes GAAP and non-GAAP financial measures. In accordance with the requirements of SEC Regulation G, reconciliations between these two measures, if these slides are in hardcopy, accompany the hardcopy presentation or, if these slides are delivered electronically, are available on the Company's website at www.amgen.com within the Investors section.

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
Talimogene laherparepvec (formerly OncoVEX^{GM-CSF})

- talimogene laherparepvec

- Name Derivation:
 TA limo gene LA herpa rep vec
 - immuno-modulating
 - gene therapy
 - herpes simplex virus based
 - replicating
 - vector

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
BioVex

- Boston based company focused on biologics for cancer and infectious disease
 - Founded in 1999 at UCL; Opened US site in 2005
 - Acquired by Amgen March 2011
- Lead product talimogene laherparepvec (formerly OncoVEXGM-CSF)
 - Activity demonstrated in multiple tumor types
 - Phase 3 melanoma study commenced in 2009
 - Recruitment completed July 2011
- ImmunoVEXHSV2
 - Live attenuated vaccine for genital herpes
 - Dosing in Phase 1 trial commenced in 2010

Liu et al., Gene Therapy 2003
CMC challenges of an Oncolytic Immunotherapy

- How does talimogene laherparepvec work?
- Does talimogene laherparepvec work?
- Bio-safety challenges in manufacturing a live viral product
 - Pre-clinical safety challenges with a viral product
 - Manufacturing bio-safety
 - Assuring viral safety of the product
- Manufacturing challenges of live viral production
- Analytical challenges of a product with a dual mode of action
Innovative Mechanism of Action

Talimogene Laherparepvec
Investigational Oncolytic Immunotherapy

Talimogene laherparepvec is an oncolytic herpes simplex virus type 1 engineered to replicate selectively in tumor cells and to express granulocyte-macrophage colony-stimulating factor. Upon injection into accessible tumors, the proposed mode of action includes:

- Necrosis of injected tumors due to virus replication
- Induction of immune response against tumor antigens, leading to an effect on uninjected lesions

LOCAL EFFECT

1. **Talimogene laherparepvec** is an attenuated virus that invades both tumor cells and normal healthy cells.
2. **Talimogene laherparepvec** selectively replicates and generates GM-CSF in tumor cells.
3. Tumor cells rupture to release replicated viruses and GM-CSF; TSAs are exposed.

SYSTEMIC EFFECT

1. Replicated viruses repeat cell lysis cycle in nearby tumor cells.
2. GM-CSF recruits dendritic cells to tumor sites.
3. Dendritic cells process and present TSAs to mediate a tumor-specific immune response.
4. Adapts immune response identifies and destroys tumor cells systemically.

The above depiction is believed to be the mechanism of action of talimogene laherparepvec. This compound is investigational.

REFERENCES:
Evidence of Destruction of Un-Injected Tumors

Mouse A20 lymphoma, tumors in both flanks

Liu et al., Gene Therapy 2003
Evidence of Tumor Necrosis

Hu et al., Clin Cancer Res 2006
Replicates in the Tumor

PFU / swab

1000

800

600

400

200

0

3d 4d 5d 6d 7d 8d 9d 10d

Days post dose of 10^7 PFU/mL on day 0

Hu et al., Clin Cancer Res 2006
Evidence of Tumor Necrosis

melanoma, three injections : $10^6, 10^8, 10^8$ pfu/ml

BioVex and Amgen data on file
Evidence of Tumor Selectivity

- Patient biopsies showed necrosis, all with strong HSV staining
- Unlike studies with previous oncolytic viruses, staining was spread throughout the tumor
- HSV staining was only rarely seen in non-necrotic tumor tissue and even more rarely in non-tumor tissue

Hu et al., Clin Cancer Res 2006
Local Production of GM-CSF in Tumor

relative mRNA levels at 48 hours

Hu et al., Clin Cancer Res 2006
Example of Results Observed from Melanoma Trial

Baseline 6 months 9 months

BioVex and Amgen data on file
Example of Results Observed in Melanoma Trial: Uninjected Sites

Senzer et al. JCO 2009;27:5763-5771

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
Right Shoulder – Baseline and 6 months

*No other lesion was ever injected in this patient

Senzer et al. JCO 2009;27:5763-5771
Overall Survival

12-month OS:
- 58% (all pts and all stage IV)
- 40% (M1c)
- 93% (responders)

Senzer et al. JCO 2009;27:5763-5771

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
Safety challenges in manufacturing a live viral product

- Pre-clinical safety challenges with a viral product
- Manufacturing bio-safety
- Assuring viral safety of the product
CMC issues in manufacturing a live virus product

- Design and Construction of a safe virus
- Pre-clinical safety challenges with a viral product
- Manufacturing bio-safety
- Assuring viral safety of your product
At which point in the project do you focus on Bio-safety?

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct virus</td>
<td></td>
</tr>
<tr>
<td>Toxicology</td>
<td></td>
</tr>
<tr>
<td>Biodistribution</td>
<td></td>
</tr>
<tr>
<td>Manufacturing process</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Phase 1 clinical study</td>
<td></td>
</tr>
<tr>
<td>Histopathology</td>
<td></td>
</tr>
<tr>
<td>Phase 2 melanoma</td>
<td></td>
</tr>
<tr>
<td>Phase 3 melanoma</td>
<td></td>
</tr>
</tbody>
</table>

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
Why select Herpes simplex virus ‘HSV?’

- Causes cold sores, genital herpes
- Same family as VZV, EBV, CMV
- Extremely well characterised
- Pathology well understood
- Can replicate in most dividing cells
- Large non-integrating DS DNA genome
- Possible to accommodate large genetic inserts
- Pre-existing immune response does not block reimmunisation
- Replication halted by acyclovir
- Known mutations supply tumour-specific growth
Construction of a safe and effective Oncolytic virus

- Tumor selective replication
 - Delete ICP 34.5
- Enhance replication in tumors
 - Engineer clinical isolates of HSV
 - Increase US11 expression
- Increase systemic immune effects
 - Delete ICP47 to prevent block of tumor cell antigen presentation
 - Incorporate GM-CSF
Preclinical safety challenges

- Selection of pre-clinical efficacy models – challenges of a human virus
- GLP toxicology - selection of suitable animal model and strain
 - use in combination studies (chemo-radiation)
 - use to support process changes
 - Murine vs human GM-CSF
- Biodistribution - requires high sensitivity & specificity from qPCR assay
 - special tissue handling methods
 - key to designing clinical protocol and human distribution studies
- Potential of latency and virus reactivitation
 - poor laboratory models
- Cell bank and virus seed stock testing
- Virus characterisation and sequencing
- Proof of concept for viral safety features
 - tumour specificity
 - GM-CSF production and distribution
 - virus shedding
CMC challenges in manufacturing a live viral product

- Manufacturing challenges of live viral production
- Analytical challenges of a product with a dual mode of action
- Regulatory considerations for an oncolytic virus
Manufacturing Bio-safety

- **Design of Manufacturing facility**
 - Early development: Multi use CMO & filling facilities
 - Later development & commercial: custom design single use facility
 - Use pressure cascade to contain and protect product

- **Process design**
 - Low pressure to minimise spills and aerosols
 - Risks increase with increasing volume
 - Minimise shear forces
 - Maximise disposable use
 - Terminal filtration vs asceptic processing

- **Operator safety and training**

- **Additional cleaning validation challenges**
Manufacturing process

Cell Build

Harvest

Benzonase Treatment

Filter Clarification

Tangential Flow Filtration

2 Chromatography steps

Sterile Filtration/Filling

4 Weeks

1 Week
Viral safety when your product is a live virus

• Follow standard ICH/Ph.Eur/FDA guidelines
• Raw material testing
• Cell bank and Viral bank testing (MCB, WCB, MVSS, WVSS)
• Clinical batch testing at virus harvest stage testing vs protection of product
 * in vitro adventitious testing on reporter cell lines*
 * in vivo adventitious testing*
 * retroviral testing*
 * impossible without good blocking antisera and dilution
• Mycoplasma testing*
Analytical challenges of a dual mode of action

Release Testing
- Demonstrate consistency and quality of product

Characterisation
- Define product and manage change

Clinical Trial Support
- Bio-distribution
- Virus containment
- Efficacy evidence

Stability Testing
- Demonstrate product stability and determine shelf life

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
Herpes Simplex Virus (HSV)

- large, double stranded DNA virus (150Kb genome)
- virus particle diameter 180 – 200 nm
- encodes for almost 80 proteins
- virus particles composed of 4 structural elements

Modified from Granzow et al., 1997
Batch release testing for Immunotherapy - the challenges

- Immunotherapy products may have more than one mode of action
 - Potency Assay(s)
 - Infectivity (Plaque assay)
 - GM-CSF assay of biological activity
 - Purity
 - Intact Particle (SEC)
 - Dissociated Proteins (Coomassie gel/ HSV Western Blot)
 - Impurities
 - BSA, Benzonase®
 - Inactive HSV, host cell DNA
 - Host cell protein
 - Content
 - Total Protein (Protein Assay)
 - Viral Protein (HSV-1 ELISA)
 - Identity
 - Southern Blot
 - Safety

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
Product characterisation - How do you manage process change?

- Can you demonstrate comparability for immunotherapeutics?

- Animal preclinical studies - safety
 - efficacy

- In vitro growth curves

- Tumour cell killing

- Potency bioassay

- Physical characterisation (SEC, light scattering, density gradients, EM)

- Protein characterisation (SDS Page, MAb binding, western blots, sequencing, ELISA)

- DNA characterisation (sequence, fingerprint, qPCR)

- Comparison of impurities

- Accelerated stability studies (elevated temperatures & freeze thaw cycles)
A20 Tumour Model

- Clears Mouse A20 lymphoma, in both injected and uninjected tumours
Characterisation – Particle Size Analysis

Zetasizer Analysis – Particle Size

Particle Size Distribution Curves

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
Dissociated Protein Quantitation

2D PAGE
- Clean images with distinct spots
- Spot pattern visually similar between batches
- Quantitative analysis

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
CMC Challenges of a Oncolytic Immunotherapy

Conclusions

- Increased expectation of purity & safety
- Increased expectation of consistency
- Complexity of characterisation
- Potency determination
- Product robustness
- Product containment
- Small scale production

Provided May 22 2012, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.
The CMC challenges in Developing an Oncolytic Immunotherapy

Colin Love,
VP, Clinical Operations

Vaccine Technology IV
May 22, 2012