Improving global human health through norovirus virus-like particle manufacturing

Scot Shepard
Takeda Vaccines, USA

Follow this and additional works at: http://dc.engconfintl.org/vaccine_vi

Part of the Engineering Commons

Recommended Citation
Improving Global Human Health through Norovirus Virus-like-particle Manufacturing

Vaccine Operations, Vaccines Business Unit

Presentation for Vaccine Technology VI, Albufeira Portugal (June 2016)

Scot Shepard, Director, Biologics Process Design
Improving Global Human Health through Norovirus Virus-like Particle Manufacturing

1 Background information and Norovirus Illness
2 Design and Manufacturing of Norovirus Virus-like Particles
3 Manufacturing Scalability and Reproducibility
4 Summary
Takeda is a Leading Global Pharmaceutical Company

Takeda Pharmaceutical Company Limited

• Takeda is a research-based global pharmaceutical company founded in 1781 with global headquarters in Osaka, Japan.

• Takeda is the largest pharmaceutical company in Japan with operations in more than 70 markets worldwide and approximately 31,000 employees.

• For more than two centuries, Takeda has continued its mission to strive towards better health for patients worldwide through leading innovation in therapeutic and preventative medicine.
Why is Takeda Pursuing a Global Vaccine Business?
...because it is high-impact, focused on prevention, and driven by innovation

“The most successful and cost-effective health care intervention, second only to clean drinking water”

“Vaccines prevent 3-4M deaths / year”

“New vaccines / better global use of existing vaccines could prevent another 4-7M deaths”

“The single most important tool to reach the 2000 UN Millennium Development Goals”

“We must make this the Decade of Vaccines”

Quotes from Gro Brundland, Jeffrey Sachs, Kofi Annan, Julio Frenck, Bill Gates and others
Noroviruses are currently recognized as the leading cause of acute gastroenteritis (AGE) worldwide.

- 21,000 to 200,000 deaths
- 2 Million hospitalized
- 35 Million seek medical care
- 350 Million cases due to norovirus
- 2.8 Billion cases of gastroenteritis every year

- 440,000 deaths
- 2 M hospitalized
- 25 M clinic visits
- 111 M episodes of gastroenteritis requiring only home care

According to the CDC, “The perfect human pathogen”

- Developed world only
- Developed world < 5 yrs of age

Rotavirus

[c] worldwide children < 5 yrs of age

Parashar et al, EID, 2003

Patel EID 2008; Hall, EID 2011;
Lopman, CID 2011; Tam, GUT 2012; Hall CID 2012
Norovirus – “The Perfect Human Pathogen”

- Genetically diverse and environmentally stable
 - Family Caliciviridae; RNA genome of ~7,500 nucleotides
 - High mutation and recombination rates → high genetic variability
 - Non-enveloped virus with one major capsid protein
 - Survives heating and freezing, remains viable on dry surfaces for weeks

- Highly contagious
 - As few as 18 particles can cause illness
 - Transmission by fecal-oral and aerosolized routes
 - Ingestion of contaminated foods or water
 - Handling of contaminated objects

- Prolifically shed
 - Up to 5 billion doses of infectious virus can be shed by an ill person over the course of a few weeks, most of which is an asymptomatic period
Norovirus – The Burden of Disease

- One-fifth of all diarrhea cases globally
- Greater than 200,000 deaths annually in kids < 5 years of age living in developing countries
- Principle cause of foodborne disease outbreaks in the United States
- A key health care-acquired infection
- A common cause of travel-associated diarrhea

The norovirus disease burden is substantial, often causing extensive and wide-ranging disruption.\(^1\)\(^2\)\(^3\)

Settings where norovirus infection is particularly disruptive.\(^2\)\(^3\)

The disruptive impact of norovirus-related disease is underestimated in outbreak data and national surveillance statistics.\(^4\)\(^5\)

Global Economic Impact of Norovirus Illness

<table>
<thead>
<tr>
<th>Model Simulation ¹</th>
<th>Annual Economic Burden (2013 USD)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Health System Costs ²</td>
<td>$4.2 billion</td>
</tr>
<tr>
<td>Societal costs ³</td>
<td>$ 60.3 billion</td>
</tr>
<tr>
<td>•Total</td>
<td>$ 60.3 billion</td>
</tr>
<tr>
<td>•Children < 5 years</td>
<td>$ 39.8 billion</td>
</tr>
</tbody>
</table>

Cost per illness varied by region and age and was highest among adults ≥ 55 years

2 Outpatient visits and hospitalization – see reference (1)
3 Productivity losses due to absenteeism and mortality costs – see reference (1)
Improving Global Human Health through Norovirus Virus-like Particle Manufacturing

1 Background information and Norovirus Illness
2 Design and Manufacturing of Norovirus Virus-like Particles
3 Manufacturing Scalability and Reproducibility
4 Summary
Takeda’s Norovirus Antigens are Virus-Like-Particles

- VLPs are engineered and expressed using state-of-the-art recombinant protein technologies
- Stable, icosahedral T3 capsid assemblies (native conformation)
- Diameter of about 40 nanometers; Mass of about 10 mDa
- No viral genetic material, can not replicate and are thus non-infectious
- Expression level is high using a scalable manufacturing platform
- Well-behaved, stable during purification and long-term storage
Noroviruses are classified into 7 genogroups and >25 human genotypes1

Different Norovirus genotypes contain largely conserved VP1 capsid protein structures

Multiple genotype-specific sequences are combined into a single synthetic VP1 capsid protein

Norovirus Classification2

Molecular models of a conserved Norovirus structural protein that highlight amino acid differences. Courtesy of GI Para, NIH.

Molecular model of a synthetic protein containing antigenic determinants from three Norovirus genotypes. Courtesy of GI Para, NIH.

1Vinje J et al. J Clin Microbiol 2015; 2Glass et al., NEJM 2009;361:1776-85
Takeda’s Norovirus Vaccine Approach

Virus-Like Particles Antigens (VLPs)

- **Native capsids**
 - Single strain immunization

- **Engineered capsids**
 - Multi-strain immunization with a single antigen

Adjuvant (TBC)

- **Potential to improve breadth of protection and to stimulate longer lasting immunity**

Included in vaccine

- **Aluminium Hydroxide**

Under investigation

- **Immuno-active adjuvants**
 - (e.g. MPL)

Consensus Strategy

- E.g. Takeda’s GII.4 Consensus Strategy
 - Epitopes from three different norovirus GII.4 strains on one VLP

Takeda NoV Vaccine

- The inclusion of immuno-active adjuvants is being evaluated and will be driven by clinical results

Presentation

- Prefilled Syringe (i.m.)
Improving Global Human Health through Norovirus Virus-like Particle Manufacturing

1 Background information and Norovirus Illness
2 Design and Manufacturing of Norovirus Virus-like Particles
3 Manufacturing Scalability and Reproducibility
4 Summary
Commercial-scale Manufacturing

- **Protein expression**
 - Common platform for all Norovirus VLPs
 - Small footprint, single-use stirred-tank reactor
 - Serum-free media, suspension culture
 - Standard BSL-1 / Grade D recombinant protein facility

- **Protein purification**
 - Chromatography and UF/DF steps performed with automated, disposable flow path skids
 - Bulk purified antigen stable long-term prior to Alum adsorption
 - VLPs characterized using contemporary protein analytical methods

- **Manufacturing operations**
 - Standard, multi-product, multi-host Mfg facility
 - VLP productivity supports global supply from one small-scale Mfg train
 - Drug product manufacturing successfully scaled to meet global demand
Representative VLP Purity Data

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Specification</th>
<th>Scale-Down Model (N=3)</th>
<th>Commercial Scale (N=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Purity Test 1</td>
<td>≥ 90%</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Product Purity Test 2</td>
<td>≥ 90%</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>Host Impurity Test 1</td>
<td>≤ 10 µg/mg</td>
<td>≤ 0.52</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Host Impurity Test 2</td>
<td>≤ 10 ng/mg</td>
<td>≤ 0.96</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Host Impurity Test 3</td>
<td>≤ 10 ng/mg</td>
<td>≤ 0.063</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Process Impurity Test 1</td>
<td>≤ 100 µg/mg</td>
<td>Not tested</td>
<td>< 0.14</td>
</tr>
<tr>
<td>Process Impurity Test 2</td>
<td>≤ 100 µg/mg</td>
<td>Not tested</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Process Impurity Test 3</td>
<td>≤ 10 µg/mg</td>
<td>Not tested</td>
<td>< 0.24</td>
</tr>
</tbody>
</table>

- Commercial scale VLPs are highly purified; similar results for other VLPs
- Results from a 1/20th scale development model are comparable to full scale
VLP Characterization Toolkit

VLP aggregates → Amino acid sequence

- Oligomers
- Quaternary Structure
- Tertiary/Secondary Structure
- Primary Structure

Laser Diffraction
Electrophoretic mobility
Micro Flow Imaging
FFF-MALS

SEC-MALS
Batch MALS
DLS
Cryo-TEM

FTIR Spectroscopy
Fluorescence Spectroscopy
UV Spectroscopy
DSC

Mass Spectrometry

Micron → **Sub-micron** → **Nanometer** → **Ångström**
Cryo-TEM Micrograph Reconstructions

Transmission Electron Microscopy can distinguish between VLPs with different primary structures.

Reconstruction from TEM images showing differences between VLP 1 and VLP 2.
Dependent on vaccine-specific amino acid sequences, particle shapes may vary
Manufacturing Reproducibility: SEC-MALS1

The majority of the nanoparticle population (97-98\%) is monodisperse (10 mDa) with 2-3\% of the population existing in a dimeric state (20 mDa).

1 SEC-MALS = size exclusion chromatography – multi angle light scattering
Manufacturing Reproducibility: Peptide mapping

When digested with a mixture of proteases and then analyzed by mass spectrometry, the resulting VLP “fingerprint” was reproducible demonstrating consistent protein sequence.
Manufacturing Reproducibility: intact mass analysis

- The VLPs are composed of a reproducible distribution of four capsid protein species
- The species vary based on minor differences in the N- or C- terminal regions
Improving Global Human Health through Norovirus Virus-like Particle Manufacturing

1 Background information and Norovirus Illness
2 Design and Manufacturing of Norovirus Virus-like Particles
3 Manufacturing Scalability and Reproducibility
4 Summary
Summary: Takeda’s Norovirus VLP Technology

• Norovirus is highly contagious and is the leading cause of acute gastroenteritis worldwide. There are hundreds of millions of cases of illness each year with up to 200,000 deaths in children < 5 years of age.

• Takeda’s norovirus vaccine candidate is based on synthetic ~40 nm VLPs manufactured by a proprietary platform process that is highly portable and is designed to fit in standard recombinant protein facilities.

• Tens of millions of highly purified VLP dose equivalents have already been produced at commercial scale.

• VLPs have been characterized by a suite of advanced particle and protein analytical methods.

• Drug product manufacturing for multiple formulations is operating at commercial scale at a sustainable cost-of-goods.

• Takeda’s VLP manufacturing platform can be applied to multiple norovirus strains and other VLP-based vaccine candidates.
Thank you

Vaccine Business Unit