Integration of high-fidelity CO2 sorbent models at the process scale using dynamic discrepancy

Joel Kress
Los Alamos National Laboratory, jdk@lanl.gov

Kujin Li
West Virginia University

David Mebane
West Virginia University

Priyadarshi Mahapatra
National Energy Technology Laboratory

Sham Bhat
Los Alamos National Laboratory

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2

Part of the [Environmental Engineering Commons](https://www.coection.com/)

Recommended Citation

Integration of High-Fidelity CO$_2$ Sorbent Models at the Process Scale Using Dynamic Discrepancy

Joel D. Kress1, Kuijun Li2,3, David S Mebane2,3 and Priyadarshi Mahapatra2

1Los Alamos National Laboratory
2National Energy Technology Laboratory
3Department of Mechanical and Aerospace Engineering, West Virginia University

CO$_2$ Summit II, Albuquerque, NM, April 12, 2016
Abstract

A high-fidelity model of a mesoporous silica supported, polyethylenimine (PEI)-impregnated solid sorbent for CO$_2$ capture has been incorporated into a model of a bubbling fluidized bed adsorber using Dynamic Discrepancy Reduced Modeling (DDRM). The sorbent model includes a detailed treatment of transport and amine-CO$_2$-H_2O interactions based on quantum chemistry calculations. Using a Bayesian approach, we calibrate the sorbent model to Thermogravimetric (TGA) data. Discrepancy functions are included within the diffusion coefficients for diffusive species within the PEI bulk, enabling a 20-fold reduction in model order. Additional discrepancy functions account for non-ideal behavior in the adsorption of CO$_2$ and H$_2$O. The discrepancy functions are based on a Gaussian process in the Bayesian Smoothing Splines ANOVA framework, which provides a convenient parametric form for calibration and upscaling. The dynamic discrepancy method for scale-bridging produces probabilistic predictions at larger scales, quantifying uncertainty due to model reduction and the extrapolation inherent in model upscaling. The dynamic discrepancy method is demonstrated using TGA data for a PEI-based sorbent and model of a bubbling fluidized bed adsorber. LA-UR-16-23184.
Rapidly synthesize optimized processes to identify promising. Better understand internal behavior to reduce time for troubleshooting. Quantify sources and effects of uncertainty to guide testing & reach larger scales. Stabilize the cost during commercial deployment.

National Labs

Academia

Carnegie Mellon
PRINCETON UNIVERSITY
West Virginia University
BOSTON UNIVERSITY
THE UNIVERSITY OF TEXAS AT AUSTIN

Industry

ADA ALSTOM B&W GE
FLUOR PHILLIPS 66 AEP AMERICAN ELECTRIC POWER
SOUTHERN COMPANY EASTMAN
EXXONMOBIL CESI PRODUCTS
CASCADIA ELECTRIC

DOE Carbon Capture Simulation Initiative
Carbon Capture Simulation for Industry Impact

CCS2

- Sept. 2015 – Large Pilot-Scale Post-Combustion
 Six DOE awards for Phase I
- Feb. 1, 2016 – CCS2 kick-off
- March, 2016 – Large Pilot-Scale Phase II proposals submitted
- Summer, 2016 – Large Pilot-Scale Phase II awards (1 or 2)

Plan - CCS2 to work closely with the Phase II awardees using the CCSI tools developed over the last 5 years
Case Study – Basic Data Submodel

- Polyamine polyethyleneimine (PEI) impregnated mesoporous silica adsorbents

- Motivation and new mechanism for reaction kinetics

- Dynamic discrepancy reduced model and Bayesian calibration

- Conclusions and future work
Introduction: Polyamine-based Adsorbents

SEM (a), TEM (b), HRTEM (c) images and particle-size distribution histogram (d) of the S600-10 sample

Length scale: (1) macroporosity
(2) meso-porous particles
(3) Silica-PEI composite

Mass transport:

Gas phase diffusion in mesopores;

Solid state diffusion in silica-PEI composites.

PEI structure
Motivation

• for exothermic adsorption, equilibrium CO$_2$ capacity should increase as operating T decreases

• opposite is observed; not under equilibrium

• kinetic limitation at low T; counter-intuitive, diffusion controlled adsorption

The effect of temperature on the CO$_2$ adsorption–desorption performance of KIT-6-PEI 50

Motivation

- CO₂ capacity in moist conditions much higher compared to dry

- Strongly suggests that moisture has a promoting effect on CO₂ capacity

Comparison of the adsorbed volume of CO₂ from simulated dry and moist flue gas.

Introduction: Reaction Kinetics

- Zwitterion Mechanism (no direct evidence)

\[
\begin{align*}
R_2NH + CO_2(g) & \rightleftharpoons R_2NH^+CO_2^- \\
R_2NH^+CO_2^- + B & \rightleftharpoons R_2NCO_2^- + BH^+
\end{align*}
\]

1) Intermediate

2) Carbamate

- Termolecular Mechanism (fails, changing rxn. orders w/conc.)

\[
R_2NH \cdots B + CO_2(g) \rightleftharpoons R_2NCO_2^- + BH^+
\]

Carbamate

(B)ase (solvent): amine, water, hydroxide

(B)ase (dry): amine
Quantum Chemistry Calculations

Conclusion
Binding energy with amines: weak dependence wrt alkyl chain length
New Mechanism

Amine

CO₂

H₂O

Zwitterion

Amine Stabilized-Zwitterion

ΔE = -16 kJ/mol

Water Stabilized-Zwitterion
New Mechanism

Transition state of $\Delta E = +120$kJ/mol

Ammonium-carnamate $\Delta E = -75$kJ/mol

H_2O-zwitterion $\Delta E = -16$kJ/mol

Transition state $\Delta E = +62$kJ/mol

Hydronium-carnamate $\Delta E = -42$kJ/mol

Reactants

Zwitterion $\Delta E = +5$kJ/mol

Transition state of $\Delta E = +120$kJ/mol

Ammonium-carnamate $\Delta E = -75$kJ/mol

H_2O-zwitterion $\Delta E = -16$kJ/mol

Transition state $\Delta E = +62$kJ/mol

Hydronium-carnamate $\Delta E = -42$kJ/mol

Reactants

H_2O-zwitterion $\Delta E = -16$kJ/mol

Transition state of bicarbonate $\Delta E = +50$kJ/mol

Bicarbonate $\Delta E = -1$kJ/mol

H_2O-zwitterion $\Delta E = -16$kJ/mol

Transition state of bicarbonate $\Delta E = +50$kJ/mol

Bicarbonate $\Delta E = -1$kJ/mol

DOE Carbon Capture Simulation Initiative
New Mechanism

\[R_2NH\cdots NHR_2 + CO_2(g) \xrightleftharpoons[\kappa_1]{\kappa_2} R_2NH^+CO_2^- - R_2NH \] (1)

\[R_2NH^+CO_2^- - R_2NH \xrightarrow[k_{-2}]{\kappa_2} R_2NCO_2^- : R_2NH^+ \] (2)

\[R_2NH + H_2O(g) \xrightleftharpoons[\kappa_3]{\kappa_3} R_2NH - H_2O \] (3)

\[R_2NH - H_2O + CO_2(g) \xrightarrow[\kappa_4]{\kappa_4} R_2NH^+CO_2^- - H_2O \] (4)

\[R_2NH^+CO_2^- - H_2O \xrightarrow[k_{-5}]{\kappa_5} R_2NCOO^- : H_3O^+ \] (5)

Variables:
\[z_1 = \text{Amine-Zw (1)} \quad x = \text{Ammonium-Carbamate (2)} \]
\[z_2 = \text{Amine-H}_2\text{O (3)} \quad z_3 = \text{H}_2\text{O-Zw (4)} \]
\[y = \text{Hydronium-Carbamate (5)} \]

Solutions:
\[W_{CO_2} = M_{CO_2} n_v (x + y + z_1 + z_3) / \rho \]
\[W_{H_2O} = M_{H_2O} n_v (y + z_2 + z_3) / \rho \]
Simulation Results on Temperature Effect

- equilibrium CO₂ capacity should increase as operating T decreases
- opposite is now basically captured with simulation in agreement with expt.
Experiment vs. Simulation Results

Dry Experiment

Humid Experiment

Wet Experiment and Simulation Results

CO₂ Weight Fraction

H₂O Weight Fraction

Adsorption Weight Fraction

Temperature (Kelvin)

Time (Seconds)

Time (Seconds)

Time (Seconds)
Methods: Bayesian Calibration and Dynamic Discrepancy

Bayesian Calibration:

$$\mathcal{P}(A|B) = \frac{\mathcal{P}(B|A)\mathcal{P}(A)}{\int_{A'} \mathcal{P}(B|A')dA'}$$

$$\mathcal{Z} = Y(\theta) + \delta(\xi) + \epsilon(\psi)$$

$$\Omega(\theta, \xi, \psi|Z) \propto \mathcal{L}(Z|\theta, \xi, \psi)\pi(\theta, \xi, \psi)$$

Dynamic Discrepancy:

Discrepancy on Kinetic non-ideality :

$$u_{bi}^* = \zeta_b \exp\left(-\frac{\Delta H_b^+}{RT}\right)$$

$$u_{bi,new}^* = \zeta_b \exp\left(-\frac{\Delta H_b^+}{RT}\right) \exp[\delta(z_{i-1}, z_i, z_{i+1}, \frac{1}{T})]/T$$

$$= u_{bi}^* \exp[\delta(z_{i-1}, z_i, z_{i+1}, \frac{1}{T})]$$

Discrepancy on Thermodynamic Equilibrium :

$$\kappa = \exp\left(-\frac{\Delta H + T\Delta S}{RT}\right)/P$$

$$\kappa_{new} = \kappa \ast \exp[\delta^E(P, T)]$$
Reduced Model

Increase the calculation speed by reducing the control volumes and add discrepancy to diffusivity coefficients.

Normal Model

DOE Carbon Capture Simulation Initiative
Calibration Results

Dry Experiment and Water Experiment and Wet Experiment and Calibration Results
Conclusion

• A new mechanism using amine and water stabilized zwitterions as diffusive intermediates has been proposed
• Model simulation replicated the experiment results qualitatively
• Bayesian calibration and dynamic discrepancy implemented in the model to get quantitatively matched results
• Reduced model is used to improve the calculation speed

Future Work

• Apply this model to bubbling fluidized bed model
• Quantify the uncertainty from model reduction and model upscaling
Acknowledgements

David C. Miller, NETL
Daniel J. Fauth, NETL
McMahan L. Gray, NETL
Greg Ball, NETL

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.