BIOENERGY PRODUCTION: ECONOMICS, POLICIES, AND ENVIRONMENTAL CONSIDERATIONS

Hosein Shapouri/USDA/OEPNU

From Concept to Commercial Process
Tomar, Portugal, March 5-10, 2006
Why Bioenergy?

• To increase energy security
• To create jobs and enhance the economic development of the rural economy
• To enhance the environment and public health
• To diversify markets for raw agricultural and forestry products
OVERVIEW

• Bioenergy:
 – Production
 – Economics
 – Policies and regulations
 – Environmental benefits
What is Bioenergy?

• Biopower

• Biofuels:
 – Ethanol
 – Biodiesel
 – Biocrude
 – Fischer & Torpsch

• Biogas
Biomass Feedstocks

• Crops containing:
 Starch- grains, roots, etc.
 Sugar- sugar beets, sugar cane, sweet sorghum, etc.
 Oil- soybeans, rapeseed, peanuts oil, etc.
 Energy crops

• **Byproducts**- molasses, cheese whey, etc.
• **Animal fats**- tallow, lard, etc.
• **Agriculture and forestry residues**
• **Organic wastes**- waste sugar and starch, sorted municipal solid waste, etc.
Biopower

• **Feedstock:** Biomass, mostly wood
• **Power plants:**
 – Dedicated
 – Cofiring
• **Process:**
 – Direct combustion and steam turbine
 – Gasification and gas turbine
 – Integrated gas turbine with combined cycle IGCC
Status of Ethanol Industry

- Number of operating ethanol plants (95), Plants under construction and expansion (41)
- Current production capacity, 16,465 million liters per year (MLPY)
- 2005 production, about 15,000 ML
- Projected production capacity, 20,800 MLPY by late 2006
- Size, less than 4 to over 1,100 MLPY
- Location, 21 States
- Process, wet and dry
- Feedstock %:
 - Corn 97
 - Sorghum 2
 - Waste 1
Ethanol Production and Prices
Status of Biodiesel Industry

- Active plants, 45
- Plants under construction or expansion, 58
- Current production capacity, about 700 million liters per year (MLPY)
- 2005 production, 200 million liters
- Projected production capacity, 1,100 MLPY
- Size, less than one to over 100 MLPY
- Feedstock %:
 - Soybean oil 90
 - Animal fats & yellow grease 10
- Biodiesel could be used as a neat fuel (B100) or could be blended with petroleum diesel fuel from 1 to 20 percent (B1-B20)
Biodiesel

100 pounds + 10 pounds = 100 pounds + 10 pounds
Soy Oil + Methanol = Biodiesel + Glycerine

or
Animal Fats

B100 = Biodiesel
Specified by ASTM D 6751

B20 = 20% B100 blended with 80% petrodiesel
Production Process Transesterification

Process Input Levels = Process Output Levels

Nothing is wasted
Economics
Value-Added Benefits per Liter

- **Corn to ethanol:**
 - Corn 2.27 kilo: -$0.18
 - Ethanol 1 liter: +$0.50
 - Byproducts, DDGS: +$0.05
 - CO2: +
 - Value of ethanol & byproducts: +$0.55
 - Value-added: +$0.37

- **Soybeans to biodiesel:**
 - Soybeans 4.78 kilo: -$0.95
 - Biodiesel 1 liter: +$0.87
 - Byproducts, soymeal: +$0.74
 - Cost of methanol = Glycerin credit
 - Value of biodiesel & byproducts: +$1.61
 - Value-added: +$0.66
Value-Added Benefits-Continued

• Cellulosic materials to ethanol:
 – Biomass 1 metric dry ton - $50
 – Biomass ethanol 416 liters + $209
 – Excess electricity 350 kwh + $21
 – CO2 +
 – Value of ethanol and byproducts + 230
 – Value-added + 180

Nth plant
Biofuel Production Costs per liter

<table>
<thead>
<tr>
<th>Cost</th>
<th>Corn-ethanol Dry-mill</th>
<th>Biomass-ethanol</th>
<th>Soy-biodiesel</th>
<th>Animal fats-biodiesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td>$0.29</td>
<td>$1.05 to $1.3</td>
<td>$0.09-$0.18</td>
<td>$0.09-$0.18</td>
</tr>
<tr>
<td>Net feed stock</td>
<td>$0.12</td>
<td>$0.15</td>
<td>$0.41</td>
<td>$0.12</td>
</tr>
<tr>
<td>Processing</td>
<td>$0.18</td>
<td>$0.38</td>
<td>$0.11</td>
<td>$0.11</td>
</tr>
<tr>
<td>Total*</td>
<td>$0.30</td>
<td>$0.53¹</td>
<td>$0.52</td>
<td>$0.23</td>
</tr>
</tbody>
</table>

* Exclude capital cost

¹ First plant
Economic Impacts of Biofuel Production

- Reduces agricultural surplus and increases commodity prices
- Creates jobs in rural areas
- Increases farm income
- Reduces government payments
- Improves trade deficit
- Reduces dependency on foreign oil
Economic Impacts of Increasing Corn-Ethanol Production by 1.4 Billion Gallons in 2012
Economic Impacts from an Increase in Demand of 1.9 Billion lbs of Soybean Oil by 2012
Economic impacts of increasing ethanol production to 8 billion gallons in 2012

- Corn
- Sorghum
- Soy meal
- Soy oil
- Soybeans
- Livestock
- Hogs
- Turkey
- Corn
- Soybeans
- Net farm income

Production Prices Area

Net farm income
Policies & Regulations
Policies which Encourage Ethanol Use

Federal Incentives for Bifuels:

• Motor fuel tax exemption
• Tax credit to small ethanol producer
• Tariff on fuel ethanol imports
• Tax deduction on purchase of renewable fueled vehicles, E85
• Federal tax credit for biodiesel
Ethanol tax expenditures

Source: U.S. Treasury
Farm Security and Rural Investment Act of 2002

- **Title IX, Energy:**
 - Federal procurement of biobased products ($1 M, 2002-07)
 - Biorefinery grants
 - Biodiesel fuel education program ($1 M, 2003-07)
 - Energy audit and renewable energy development program
 - Renewable energy systems & energy improvements ($23 M, 2003-07)
Farm Security and Rural Investment Act of 2002--Continued

– Hydrogen and fuel cell technologies
– Biomass research and development ($14 M, 2003-07)
– Bioenergy program ($150 M, 2003-06)
– Renewable energy development loan and grant program
Impact of Energy Policy Act of 2005

- Triples the biofuels use
- Allows increase in the renewable fuels standard (RFS) from 15 to 28 billion liters during 2006 to 2015
- Allows 946 million liters a year of cellulosic-ethanol be included in the RFS from 2013
- Gives flexibility to refineries by creating a credit trading for biofuels
Energy Policy Act of 2005--Continued

• Enhances the air quality standards
• No liability protection for MTBE
• Creates grant and loan guarantee programs for cellulose ethanol and ethanol production from sugar
• Allows tax relief provisions
Energy Policy Act of 2005--Continued

• Targeted biomass research and development
• Production incentives
• Procurement of biobased products
• Bioeconomy grants
• Other provisions, education and outreach and reports
Net Energy Balance of Bioenergy
Net Energy Balance (NEB) and Net Energy Ratio (NER)

- **NEB** - is defined as energy content of a fuel, minus the energy content of petroleum and energy sources required to produce it.

- **NER** - is defined as energy output divided by energy input.
Net energy ratio of ethanol and fossil fuels
Net energy balance of ethanol and fossil fuels
Impacts of New Technologies on Net Energy Balance

• Higher crop yield per hectare
• Lower energy and chemical use per hectare
• Higher ethanol yield per ton of feedstock
• Lower energy use in conversion of feedstock to biofuels
Impacts of Bioenergy on Environment

• Bioenergy production reduces tailpipe and other toxic emissions and improves air quality
• Cleaner air reduces diseases associated with breathing air
• Lowers the emission of NOx, SOx, CO and other harmful emissions
• Reduces greenhouse gas emissions
CONCLUSIONS

• Bioenergy production reduces country dependency to foreign oil and reduces fossil fuels consumption

• Bioenergy production reduces greenhouse gas emissions, creates jobs and improves economic conditions of rural areas

• To expand bioenergy production, public policies and regulations are necessary