Spring 6-11-2013

Novel Ni-based catalysts for the hydrotreatment of fast pyrolysis oil

Erik Heeres
University of Groningen

Agnes Ardiyanti
University of Groningen

Arjan Kloekhorst
University of Groningen

Y. Wng
University of Groningen

S.A. Khromova
University of Groningen

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv

Part of the [Chemical Engineering Commons](http://dc.engconfintl.org/bioenergy_iv)

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Erik Heeres, Agnes Ardiyanti, Arjan Kloekhorst, Y. Wng, S.A. Khromova, Vadim Yakovlev, and Robbie Venderbosch

This conference proceeding is available at ECI Digital Archives: http://dc.engconfintl.org/bioenergy_iv/29
Novel Ni-based catalysts for the hydrotreatment of fast pyrolysis oil

Agnes Ardiyanti, Arjan Kloekhorst, Y. Wang, Erik Heeres (University of Groningen)
S.A. Khromova, Vadim Yakovlev (BIC)
Robbie Venderbosch (BTG)
Content

› Introduction
 • Catalytic hydrotreatment
 • Objectives

› Results and discussion
 - Catalyst screening studies: identification of novel catalysts
 - Process studies

› Conclusions

› Acknowledgment
Pyrolysis 2.0: a biorefinery

Primary Processing
- Lignocellulosic Biomass
- Fast-Pyrolysis
- Char 10 – 15 wt%
- Gaseous 10 – 15 wt%
- Activated carbon
- Carbon black
- Soil improvement
- Pyrolysis oil 70 – 75 wt%

Secondary Processing
- Primary Fractionation
- Aqueous phase
- Sugars

Tertiary Processing
- Upgrading catalytic hydrotreatment
- Oil phase
- Chemicals Isolation
- Carboxylic Acids
- Phenol
- Aldehyde
- Furan
- Levoglucosan

Applications
- Transportation fuels
- Combustion engines
- Feedstock for refinery
- Alcoholic fuels
- Fuel gas/syngas
- Heat & Electricity

Aqueous phase
- Gasification
- Combustion

Oil phase
Catalytic hydrotreatment

\[-(CH_xO_y)- + cH_2 \rightarrow -(CH_x)^- + (H_2O, CO_2, CH_4, CO)\]

Typical conditions: 125-400°C, 20-200 bar pressure
Two stage hydrotreatment

Pyrolysis oil → Stabilisation → SPO → Deep Hydrodeoxygenation → DHPO → Refining

- Picula catalysts
- Conventional catalysts

Co-feeding in refinery

Hydrocarbons Applications: Biofuels Aromatics
Objectives catalytic hydrotreatment

› Process considerations:
 • Low hydrogen consumption
 • Active, stable and cheap catalysts

› Product considerations
 • Reduced oxygen content, exact amount depending on product application
 • Low viscosity
 • Low water content
 • Low coking tendency (improved thermal stability)
 • Preferably miscible with hydrocarbons
Stabilisation: catalyst developments

- Benchmark: Ru/C
- Bimetallic noble metal catalysts
- Ni-Cu catalyst on supports
- Improved Ni-Cu catalysts (Picula)

d. Venderbosch and Heeres; Chapter 17: Pyrolysis Oil Stabilisation by Catalytic Hydrotreatment, Biofuel's Engineering Process Technology, Free download: http://www.intechopen.com, Patent application pending
Picula catalysts

Table 2 Catalyst composition

<table>
<thead>
<tr>
<th>Code</th>
<th>Active metal loading (wt%)</th>
<th>Support (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picula Cat B</td>
<td>Ni 58.3 Pd 0.7</td>
<td>SiO₂ 41</td>
</tr>
<tr>
<td>Picula Cat C</td>
<td>Ni 28.8 Cu 3.7</td>
<td>SiO₂ 33.8 Kaolin 33.8</td>
</tr>
<tr>
<td>Picula Cat D</td>
<td>Ni 57.9 Cu 7</td>
<td>SiO₂ 35.1</td>
</tr>
<tr>
<td>Picula Cat E</td>
<td>Ni 36.5 Cu 2.3</td>
<td>SiO₂ 12.6 ZrO₂ 37.2 La₂O₃ 0.9</td>
</tr>
</tbody>
</table>

- High Ni content (29-58 wt%)
- Promoted with Cu, Pd
- Various supports
- Prepared by BIC

Venderbosch and Heeres; Chapter 17: Pyrolysis Oil Stabilisation by Catalytic Hydrotreatment, Biofuel's Engineering Process Technology, Free download: http://www.intechopen.com
Batch studies

- 150 °C, 1 h
- 350 °C, 3 h
- 200 bar
Batch studies

- Pyrolysis oil
- Atomic O/C (dry)
- Atomic H/C (dry)

- TG residue of upgraded oil (wt%)
- Atomic H/C (dry) of upgraded oil
Continuous experiments

- 4 fixed-bed reactors in-series
- Catalyst: Picula catalyst D
- H_2 pressure: 200 bar
- WHSV = 0.6 – 1 h$^{-1}$
- Variable: T

Analysis:
- Elemental composition, TGA, GPC, TAN, CAN, 2D-GC
Continuous experiments
Visual appearance

Pyrolysis oil 150°C 400 °C distillates
2D-GC

150 C

400 C

polarity

b.p
Product is distillable
Two stage hydrotreatment

Stabilisation → SPO → Deep Hydrodeoxygenation → DHPO → Refining

Picula catalysts → Conventional catalysts

Co-feeding refinery → Hydrocarbons Fuels Aromatic

Date 25.06.2010
Conclusions

› Novel catalysts for pyrolysis oil stabilisation by catalytic hydrotreatment have been identified

› Products are distillable, indicative for improved thermal stability

› Picula catalysts show unique performance
 - Improved product properties at low processing temperature
 - Low hydrogen consumptions due to limited methane formation
 - Good hydrothermal stability (run times up to 400 h have been demonstrated)

› Two stage hydrotreatment leads to deep deoxygenation and formation of hydrocarbons
Acknowledgement
Vacancy

Tenure Track Assistant Professor Green Chemistry and Technology (1,0 fte)

Deadline for applications: June 28, 2013

Contact: h.j.heeres@rug.nl
Carbonyl number

Alehydes and ketones are very reactive at low temperature

Formation of new compounds at about 250 °C
Elemental composition

Sequence:

- Hydrogenation
- Dehydration
- Hydrogenation
Molecular weight (GPC)

Sequence:

- Limited polymerisation till 250 °C
- Hydrocracking above 300 °C
Total acid number

Acids are very persistent, reactive only above 300 °C
$^{13}\text{C} \text{ NMR}$

Temperatures:
- 150°C
- 250°C
- 320°C
- 350°C
- 400°C

Frequencies:
- 0
- 50
- 100
- 150
- 200
Overview

Stabilisation (< 250 °C)
- Competition between hydrogenation and polymerisation
- Water formation by condensation reactions
- Slight increase in Mw
- Hydrogenation of aldehyde/ketones
- Sugar chemistry dominates

Mild hydrotreatment (250-350 °C)
- Hydrogenation-dehydration
- Reduction in Mw
- Water formation by alcohol dehydration
- Breakdown of higher Mw fractions
- Sugar-sugar alcohol chemistry dominates

Deep hydrotreatment (> 350 °C)
- Hydrocracking
- Further reductions in Mw
- Formation of aromatics and aliphatic hydrocarbons
- Acid conversion
- Lignin chemistry dominates
Reaction pathway

Pyrolysis Oil

- Hydrogenation
 - $+H_2$, catalyst, $T > 80 \, ^\circ C$
 - Stable fragments

- Hydrodeoxygenation
 - $+H_2$, catalyst, $T > 250 \, ^\circ C$
 - Non-polar fragments, aqueous phase

- Re-polymerisation
 - $T > 175 \, ^\circ C$, non catalytic, fast
 - High mol. fragments

- Hydrogenation
 - $+H_2$, catalyst, $T > 200 \, ^\circ C$
 - Stable fragments

- Hydrocracking
 - $+H_2$, catalyst, $T > 250 \, ^\circ C$
 - Non-polar fragments (low M_w), aqueous phase

- Charring
 - $T > 175 \, ^\circ C$, non catalytic, fast
 - Char

Catalytic biomass conversions RUG/CRE

<table>
<thead>
<tr>
<th>Biofuels</th>
<th>Biobased chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Catalytic pyrolysis oil upgrading</td>
<td>Platform chemicals</td>
</tr>
<tr>
<td>• Biodiesel from Jatropha Curcas</td>
<td>• hydroxymethylfurfural</td>
</tr>
<tr>
<td>• Green gas by supercritical gasification in water</td>
<td>• levulinic acid/lactic acid</td>
</tr>
<tr>
<td></td>
<td>• methanol</td>
</tr>
<tr>
<td></td>
<td>• furanics based diols</td>
</tr>
<tr>
<td></td>
<td>• phenolics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bio-based performance materials</th>
<th>Enabling science and technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Starch modifications in non-conventional solvents</td>
<td>• Catalyst development</td>
</tr>
<tr>
<td>• alcohols</td>
<td>• Process intensification using centrifugal contactor separators</td>
</tr>
<tr>
<td>• supercritical CO2</td>
<td></td>
</tr>
</tbody>
</table>
Fast Pyrolysis Oil

Lignocellulosic biomass \rightarrow Fast Pyrolysis \rightarrow Volatiles, Condensables, Fast Pyrolysis Oil \rightarrow Char

450-600 °C, 1-2 s

BTG, Enschede
Fast pyrolysis oil characteristics

- High oxygen content (up to 50%)
- Immiscible with petroleum products
- Limited stability upon heating and storage (coke formation, repolymerization)

Pyrolysis oil composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (wt%)</td>
<td>40.1</td>
</tr>
<tr>
<td>H (wt%)</td>
<td>7.6</td>
</tr>
<tr>
<td>O (wt%)</td>
<td>52.1</td>
</tr>
<tr>
<td>Moisture (wt%)</td>
<td>23.9</td>
</tr>
</tbody>
</table>
Biomass application platforms

High T platform
Combustion
Gasification
Pyrolysis

Low T platform
Pre-treatment
/hydrolysis
Fermentation
Separation in fractions

Secondary conversions

Heat and Power
Transportation fuels
Biobased Chemicals
Biobased Performance materials