Lifecycle Energy Modeling
Input into Upstream Design Process

Prasanth Chandrahasan
Senior Consultant
Siemens Energy Inc.
Oil and Gas Division

CO₂ Summit: Technology and Opportunity
6-10 June 2010, Vail CO USA
Agenda

Background
- energy usage profile of upstream industry
- upstream conceptual design process
- typical conceptual design case generation

Design input
- production profile
- valuation methods

Comparison
- energy intensity vs. production
- CO₂ emissions vs. production
- availability model output

Conclusion
- net savings achieved – life cycle
- net savings achieved – totals
- questions
Background
Energy usage profile of upstream industry

Top Energy Intensive Industries (worldwide, 2005)

- Upstream and Midstream: 25.28
- Iron and Steel: 20.32
- Refining: 17.23
- Petrochem and Chemicals: 14.25
- Cement: 7.78

Oil and gas is top industrial energy user

Upstream use primarily in pumping/compression
Background
Typical facility conceptual design process

Stage gate process
method of capital appropriation

Assess phase (0.1% of project capital)
develop concept design cases
generate high level definition
target +/-50% cost estimate

Select phase (1% of project capital)
refine and select base case
front end engineering work
target +/-30% cost estimate

Define phase (10% of project capital)
detailed engineering
target +/-10% cost estimate
Background

Typical concept design case generation

- Base process requirements
 - 2 stage separation with OTU
 - 3 stage separation
 - Sales gas let down from terminal stage
 - Separate lift gas compressor
 - Air cooling
 - Indirect seawater cooling
 - Seawater T_{max} 85°F
 - Seawater T_{max} 65°F
 - Centralized electric plant with motors
 - Discrete turbine drives
 - All GoM construction
 - Subs constructed in Europe
 - 4 leg full size TLP
 - 4 leg mini TLP
 - 4 leg mid size TLP
 - 4 leg Semisub
 - FPDSO
 - Truss Spar

Candidate for further study
Rejected
Design input
Production profile

Production Profile

- Oil Production
- Produced Water
- Injected Water
- Gas Production

Production Year

kBPD

MMSCFD
<table>
<thead>
<tr>
<th>Design input</th>
<th>Valuation methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel usage</td>
<td>cost avoidance of fines associated with flaring</td>
</tr>
<tr>
<td></td>
<td>discounted NPV assuming future local gas market</td>
</tr>
<tr>
<td></td>
<td>average pricing for recent gas sales or fraction thereof</td>
</tr>
<tr>
<td></td>
<td>2009 average wellhead gas price $3.71/kscf</td>
</tr>
<tr>
<td>CO₂ emissions</td>
<td>primarily cost avoidance of emissions taxes</td>
</tr>
<tr>
<td></td>
<td>possible offsets market for international companies</td>
</tr>
<tr>
<td></td>
<td>discounted NPV for countries with future requirements</td>
</tr>
<tr>
<td></td>
<td>EUA December 2010 contract was €15.10/ton CO₂ (5/28/2010)</td>
</tr>
<tr>
<td>Availability</td>
<td>calculate actual production time out of service</td>
</tr>
<tr>
<td></td>
<td>use production pricing and profile for value</td>
</tr>
<tr>
<td></td>
<td>compare NPV for base output and for increased availability</td>
</tr>
<tr>
<td></td>
<td>NPV difference is value of deferred production</td>
</tr>
<tr>
<td></td>
<td>Brent spot was $72.40/bbl (5/28/2010)</td>
</tr>
<tr>
<td>Inflation</td>
<td>2.5% annually</td>
</tr>
</tbody>
</table>
Comparison
Energy intensity vs. production

Annual Average Energy Intensity vs. Production

Energy Intensity (%)

Daily Oil Production (kbpd)

Production Year

GT
VSD
Production

© Siemens AG 2010
Oil & Gas
Comparison
CO₂ emissions vs. production

CO₂ Emissions vs. Production

- GT
- VSD
- Production

© Siemens AG 2010
Oil & Gas
Comparison
Availability model
Conclusion
Net savings achieved, life cycle

Constituent Values of Life Cycle NPV Savings (VSD vs. GT)

- Availability Increase
- CO2 Emission Reduction
- Fuel Usage Reduction
Conclusion
Net savings achieved, totals

<table>
<thead>
<tr>
<th></th>
<th>GT</th>
<th>VSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPEX (total platform installed cost)</td>
<td>1,149,163,400</td>
<td>1,183,251,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(34,088,200)</td>
</tr>
<tr>
<td>NPV OPEX savings for fuel gas</td>
<td>9,304,509</td>
<td></td>
</tr>
<tr>
<td>NPV OPEX savings for emissions</td>
<td>1,925,837</td>
<td></td>
</tr>
<tr>
<td>NPV OPEX savings for uptime</td>
<td>62,315,457</td>
<td></td>
</tr>
<tr>
<td>Total NPV savings</td>
<td></td>
<td>73,545,804</td>
</tr>
<tr>
<td>Overall savings</td>
<td></td>
<td>39,457,604</td>
</tr>
</tbody>
</table>
Questions?