Engineering of lightweight ceramic composites by spark plasma sintering

Oleg Vasylkiv

*Nanyang Technological University, Singapore, ovasylkiv@ntu.edu.sg*

Follow this and additional works at: [http://dc.engconfintl.org/efa_sintering](http://dc.engconfintl.org/efa_sintering)

Part of the Engineering Commons

**Recommended Citation**

ENGINEERING OF LIGHTWEIGHT CERAMIC COMPOSITES BY SPARK PLASMA SINTERING

Dmytro Demirskyi, Temasek Laboratories, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
Hanna Borodianska, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Yoshio Sakka, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Oleg Vasylkiv, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan;
Temasek Laboratories, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore,
Oleg.VASYLKIV@nims.go.jp, OVasylkiv@ntu.edu.sg

Key Words: spark plasma sintering, reaction-driven consolidation, boron carbide, mechanical properties, high-temperature strength.

It is well recognised that value of porosity and grain size influences mechanical properties such as fracture toughness, elastic modulus and strength dramatically. Boron carbide (B₄C), as well as other lightweight ceramics like TiB₂, B₆O requires high consolidation temperatures owing to its poor sinterability. Therefore such decrease of ceramics properties becomes a materials processing issue since during consolidation process on the final stage of sintering (either pressure-assisted or pressureless one) grain growth starts. To overcome this problem, various metallic and non-metallic binders are used to obtain dense borides. However, the presence of a metallic binder is not desirable for high-temperature structural applications. We propose that reaction-driven consolidation by means of spark plasma sintering (SPS) at temperatures exceeding 1800 °C as an alternative method for fabrication of high-temperature lightweight ceramic composites.

This work summarizes recent activity on processing of lightweight ceramics based on boron carbide, boron suboxide and titanium diboride in the respect to mechanical properties: such as hardness, fracture toughness and room and high-temperature strength. Application of various techniques for powders preparation and consolidation by SPS is thoroughly discussed in respect to obtained lightweight ceramic composites properties. A thorough discussion of high-temperature properties for these ceramic composites is also provided.