Engineering Conferences International ECI Digital Archives

Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration

Proceedings

11-8-2017

SiC-SiC CMCs Using BN powder coated silicon carbide fibers

Eric Ness CoorsTek, K.K., eness@CoorsTek.com

Shinichiro Aonuma *CoorsTek, K.K.*

Koichi Machida *CoorsTek, K.K.*

Charles Lewinsohn CoorsTek Inc.

Follow this and additional works at: http://dc.engconfintl.org/acmc Part of the <u>Engineering Commons</u>

Recommended Citation

Eric Ness, Shinichiro Aonuma, Koichi Machida, and Charles Lewinsohn, "SiC-SiC CMCs Using BN powder coated silicon carbide fibers" in "Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration", Yutaka Kagawa, Tokyo University of Technology, Japan Dongming Zhu, NASA Glenn Research Center, USA Ram Darolia, GE Aviation (retired), USA Rishi Raj, University of Colorado, Boulder, USA Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/acmc/30

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Sic Sic CMCausing								0			•		•		0					
SIC - SIC CIVICS USING		1		1			•	0			•	0								
BN powder coated												•					•			
				•								•								
silicon carbide fibers																				
E. Ness, K. Machida, S. Aonuma, &																				
SIC – SIC CMCs using BN powder coated silicon carbide fibers E. Ness, K. Machida, S. Aonuma, & C. Lewinsohn November 8, 2017				0					÷			0								
				0										•						
November 8, 2017	-			0	0	•					•			•			•	•		
	-			0		•	6			•	•	•	•	•			•	•		
		÷		0			*		٩.	1							•			
		1 0		0		•	1				÷.,	•		•			•			
	1 9 , &	•	0		•	•				0	•	•	• •				•			
				•																
												_								
This document does not contain technical data according to the																	-			_
TAR and/or EAR. FB L og # 17-DR-186				0									C	C	X	<u>J</u> R	S		ΞĶ	8

WORLDWIDE

Global reach & local support

R&D centers in Japan, US, Europe 30 locations / 0.5M m² ceramic manufacturing HQ in Golden, Colorado

Silicon Carbide Processing at CoorsTek K.K.

BN Powder Motivation

1. Performance

- Lessons from C-SiC composite experience
- Resin/slurry penetrates fiber bundles > BN slurry should be able to do the same

2. Process

- Melt Infiltration (MI) production
- Available BN powder & SiC fiber options
 - Denka, Showa Denko, Maruka
 - Ube Tyranno SA fiber (coat tows woven into fabric)

3. Value

- CVD alternative
- Lower cost / less hazardous

Mechanical Evaluation | SENB

Samples from ~ 16 layer composite

- ~45 mm x 15 mm x 5 mm
- 2 test bars per sample

JCRS 201

- 40 mm L x 3 mm W x 4 mm D (ideal)
- Notch depth is half the height: typically 2mm
- 3-point flexure (30 mm span)
- 0.01 mm/min

Fracture energy from crosshead position

 $\gamma = U / 2A$

• Trapezium software (Shimadzu)

First Trial

Tyranno SA 8HS weave

BN (Φ 0.7 µm) UHP in alcohol + resin

Matrix slurry (SiC + phenolic resin)

First Trial | Results

Density is high; porosity is low

	Vol.% Fiber	Density (g/cc)	Porosity (%)
Preform	43	2.19	15
Si Infiltrated		2.77	2

First Trial | Observations & Conclusions

- 1. Silicon penetrated the fiber bundle
- 2. BN appears to be displaced or reacted with the silicon
 > no fiber protection from the BN particles

Strategies for improvement:

- a. Improve adhesion of BN to fibers
- b. Electrolyte solutions
- c. Thicker BN layers

Bright areas indicate silicon penetrated to interior of bundle.

Electrolyte Concept | Heterocoagulation

- Poly-electrolyte aqueous solutions: A- & B+
- Powder suspension made with A- electrolyte
- Fabric dipped in B+ electrolyte then in A-
- Coated fabric then rinsed with solution C

Particle Size Limitation

Not effective

Not effective at 1µm

Very effective

Improving Solution B

BN 0.7 μm (UHP)

Single layer coat

BN 0.7 μm (UHP)

Improved process

11 CoorsTek

Heterocoagulation | **Results**

Parameter	Value
Vol % fibers	55
Density (g/cm ³)	2.88
Porosity (%)	3

Heterocoagulation trial

- All failures are brittle
- No improvement in strength
- No improvement in fracture energy

Modifying the MI Process

Issue

Excess silicon inside and in between fiber bundles

Goals

- Less interaction between Si(I) and BN coating
- Less fiber and interphase degradation
- Better mechanical properties

Approach

Reduce excess silicon by providing additional carbon for reaction during infiltration

Combining the Processes

PARAMETER	NO EXTRA RESIN	EXTRA RESIN
Vol.% Fibers	55	58
Density (g/cc)	2.88	2.82
Porosity (%)	3	2

Extra resin (carbon) added

- 1. Significant increase in fracture energy ... but high variation
- 2. No strength improvement

	NO EXTRA RESIN	
	Fracture Energy Average	30 J/m ²
	Strength Average	100 Mpa
	EXTRA RESIN	
—	EXTRA RESIN Fracture Energy Average	200 J/m ²

Microstructures | With & Without Extra Carbon

15 CoorsTek Confidential

Modifying Particle Coating Process

Issue

Fibers coated unevenly

- Multiple layers in some areas
- No coating in some areas
- No fiber protection/weak interphase

Goals

- Improve coating uniformity
- Produce fiber/BN/C structure

Approach

- Nano-sized BN particles
- Multiple BN coats

Individual fibers

Fiber Pullout | Improves With Multiple Coats

0.7 µm, 1X

0.05 µm, 5X

0.05 µm, 7X

19 CoorsTek

Scenarios to Increase Thickness

- Optimized particle packing;
 bimodal distribution
- Minimize the number of layers

Multiple layers for thickness

Increase Number of Coatings

ITE	MS	1 X 0.7 μm 9 X 0.05 μm	41 X BN 0.05 μm
Vol.% Fiber		48	49
Density	(g/cm ³)	2.60	2.62
Porosity	(%)	8.05	7.77
Strength	(MPa)	178	326
Avg Energy	(J/m ²)	1400	4000

Conclusions

- 1. BN powder adhesion to SiC fiber by heterocoagulation
 - Coat with fine BN particles (< 0.7 μm)
 - Multiple coats applied
- 2. MI process improvement
 - Extra carbon added via resin
 - Coating over BN particles

Excellent mechanical properties achieved

- Strengths > 300 MPa
- Fracture energy > 4000 J/m²

Next Steps

	٦	Thank You November 8, 2017				•	•		•	•	•	•	•	•	•	•	•	•	0	•	•		•			•																			
																						.0					•																		ł
																											•		٠			۰,			.*		٠	•							ļ
		Thank You November 8, 2017 is document does not contain technical data according t AR and/or EAR.								•								. *							-	. 0	-	ł																	
	Thank You November 8, 2017								•	•	•																																		
																														÷.															
)							0				0							,		0																									
p.											0	I								0			0					0		0	0	0					0							-	í
							0					1		•	0												•				•									0					1
						0	0							•	0	0			0								•								.*										
		0		0						0				0		.0			•	0	0						0			0				0			0				0		.0		1
ř.	0	0				0		•		0	0			0	•	0	0			•			•		.0		0		0	0	0		0		0		0			0					1
ł						•					0			•								-												-						•					ĺ
	Thi: ITA TB	s do R a Log	ocur nd/ # ´	nen or E 7-[t d AF DR-	oe: {. -18	s n 6	ot c	on:	ıtai	n te	ech	inic	al (data	a a	ccc	ord	ing	to	the		•	•	0		•	•	•	•	•	•	0		(C	C)ŀ	RŚ	5	Ē	K	.®	