Developments of Corn for Dry Grind Corn Processing

Vijay Singh, Kent Rausch, Carl Miller and Jim Graeber
University of Illinois at Urbana-Champaign
Syngenta Inc.

Bioenergy-I Conference
March 5-10, 2006
Tomar, Portugal
Presentation Outline

- Conventional Dry Grind Process
- Ethanol Production Capacity and Growth in Dry Grind Corn Processing Industry in US
- Development of Corn in Dry Grind Corn Processing
 - Effect of hybrid variability on dry grind corn process
 - High fermentable corn hybrids
 - Correlation between extractable starch and fermentable starch
 - Granular starch hydrolyzing enzymes
 - Corn hybrids with endogenous liquefaction enzymes
 - Corn hybrids for modified dry grind corn processes
- Conclusions
Dry Grind Process

One bushel of Corn (25.4 kg) → Corn Dry Grind Facility → 2.5-2.7 gal of Ethanol

15-17 lbs of DDGS → Ruminant Feed
Dry Grind Process

Corn → Grinding (Hammermill) → Water → Blending → Mash → Liquefaction → Enzymes → Yeast & Enzymes → Saccharification & Fermentation → CO₂ → Overhead product (Recycled back) → Ethanol → Dehydration column → DDGS → Stripping/Rectifying column
Ethanol Production in the US

- Currently 4.3 billion gal of ethanol is produced in the US every year.
- Estimates indicate that ethanol production in the US will increase to 6.0 billion gals/yr by 2006.
- Most of the increase in the ethanol capacity will come from new dry grind ethanol plants:
 - Low capital cost for dry grind corn plants
 - Tax incentives from federal and state governments
 - Farmer co-ops
Developments of Corn for Dry Grind Process

- Hybrid Variability
- High fermentable corn hybrids
- Correlation between extractable starch and fermentable starch
- Corn hybrids with endogenous liquefaction enzymes
- Corn hybrids for modified dry grind corn processes
Hybrid variability in a dry grind corn facility is generally defined by two factors:

1. Differences in fermentability
2. Variation in the composition of DDGS
Effect of Hybrid Variability on Dry Grind Corn Process

- Final ethanol concentration in beer
- Coproduct quality
- Capital and Operating Cost
 - Process fluctuations
 - Maintenance
Extent of Hybrid Variability for Ethanol Production

Hybrids

Ethanol Conc. % (v/v)

3.26%
Hybrid Specific Processing

- Limited number of elite line hybrids
 - good producer yields but with good ethanol yield, too
Identifying of Hybrids with High Fermentability

2004 Pioneer brand hybrids for Dry-Grind Ethanol

HIGH TOTAL FERMENTABLES:

<table>
<thead>
<tr>
<th>HYBRID</th>
<th>CRN ZONE</th>
<th>TRAIT</th>
<th>BASE GENOTYPE</th>
<th>HYBRID</th>
<th>CRN ZONE</th>
<th>TRAIT</th>
<th>BASE GENOTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>32D5</td>
<td>95</td>
<td>37D25</td>
<td>37D25</td>
<td>32Y55</td>
<td>108</td>
<td>YGC8</td>
<td>35Y54</td>
</tr>
<tr>
<td>37D25</td>
<td>95</td>
<td>37D25</td>
<td>37D25</td>
<td>35Y67</td>
<td>108</td>
<td>HX1, LL</td>
<td>35Y66</td>
</tr>
<tr>
<td>38A24</td>
<td>95</td>
<td>38A24</td>
<td>38A24</td>
<td>32D12</td>
<td>113</td>
<td>RR</td>
<td>32D12</td>
</tr>
<tr>
<td>38A25</td>
<td>95</td>
<td>YGC8</td>
<td>38A25</td>
<td>38S26</td>
<td>113</td>
<td>RR</td>
<td>38S26</td>
</tr>
<tr>
<td>38P56</td>
<td>95</td>
<td>YGC8</td>
<td>38P56</td>
<td>38S50</td>
<td>113</td>
<td>RR</td>
<td>38S50</td>
</tr>
<tr>
<td>38T27</td>
<td>95</td>
<td>YGC8</td>
<td>38T27</td>
<td>38S51</td>
<td>113</td>
<td>YGC8</td>
<td>38S50</td>
</tr>
<tr>
<td>38T29</td>
<td>95</td>
<td>YGC8</td>
<td>38T29</td>
<td>38S55</td>
<td>113</td>
<td>HX1, LL</td>
<td>38S50</td>
</tr>
<tr>
<td>36N70</td>
<td>109</td>
<td>36N70</td>
<td>36N70</td>
<td>33D01</td>
<td>113</td>
<td>RR</td>
<td>33D01</td>
</tr>
<tr>
<td>38A23</td>
<td>109</td>
<td>YGC8, CL</td>
<td>38A24</td>
<td>33D05</td>
<td>113</td>
<td>RR</td>
<td>33D05</td>
</tr>
<tr>
<td>38A81</td>
<td>109</td>
<td>RR</td>
<td>38A24</td>
<td>33D06</td>
<td>113</td>
<td>RR</td>
<td>33D06</td>
</tr>
<tr>
<td>38H67</td>
<td>109</td>
<td>38H67</td>
<td>38H67</td>
<td>33D08</td>
<td>113</td>
<td>HX</td>
<td>33D08</td>
</tr>
<tr>
<td>33P45</td>
<td>103</td>
<td>33P45</td>
<td>33P45</td>
<td>33P64</td>
<td>113</td>
<td>HX1, LL</td>
<td>33P66</td>
</tr>
<tr>
<td>35P12</td>
<td>103</td>
<td>35P12</td>
<td>35P12</td>
<td>33P71</td>
<td>113</td>
<td>CL</td>
<td>33P71</td>
</tr>
<tr>
<td>35P17</td>
<td>103</td>
<td>LL</td>
<td>35P12</td>
<td>33P77</td>
<td>113</td>
<td>CL</td>
<td>33P77</td>
</tr>
<tr>
<td>35S54</td>
<td>103</td>
<td>35S54</td>
<td>35S54</td>
<td>33P78</td>
<td>113</td>
<td>YGC8</td>
<td>33P78</td>
</tr>
<tr>
<td>35S65</td>
<td>103</td>
<td>35S65</td>
<td>35S65</td>
<td>33S79</td>
<td>113</td>
<td>LL</td>
<td>33S79</td>
</tr>
<tr>
<td>36N19**</td>
<td>103</td>
<td>36N19</td>
<td>36N19</td>
<td>33S82</td>
<td>113</td>
<td>HX1, LL</td>
<td>33S82</td>
</tr>
<tr>
<td>36N71</td>
<td>103</td>
<td>YGC8</td>
<td>36N70</td>
<td>33S86</td>
<td>113</td>
<td>LL</td>
<td>33S86</td>
</tr>
<tr>
<td>36N72**</td>
<td>103</td>
<td>36N72</td>
<td>36N70</td>
<td>33S89</td>
<td>113</td>
<td>LL</td>
<td>33S89</td>
</tr>
<tr>
<td>34B97</td>
<td>108</td>
<td>34B97</td>
<td>34B97</td>
<td>34A24**</td>
<td>113</td>
<td>HX1, LL</td>
<td>34A24</td>
</tr>
<tr>
<td>34G91</td>
<td>108</td>
<td>34G91</td>
<td>34G91</td>
<td>34H31</td>
<td>118</td>
<td>YGC8</td>
<td>34H31</td>
</tr>
<tr>
<td>34G92</td>
<td>108</td>
<td>34G92</td>
<td>34G92</td>
<td>34I01</td>
<td>118</td>
<td>HX</td>
<td>34I01</td>
</tr>
<tr>
<td>34H32**</td>
<td>108</td>
<td>YGC8</td>
<td>34H31</td>
<td>34I08</td>
<td>118</td>
<td>HX</td>
<td>34I08</td>
</tr>
<tr>
<td>34M64</td>
<td>108</td>
<td>34M64</td>
<td>34M64</td>
<td>34L88</td>
<td>118</td>
<td>HX</td>
<td>34L88</td>
</tr>
<tr>
<td>34N16</td>
<td>108</td>
<td>34N16</td>
<td>34N16</td>
<td>32P75</td>
<td>118</td>
<td>YGC8</td>
<td>32P75</td>
</tr>
<tr>
<td>34N43</td>
<td>108</td>
<td>34N43</td>
<td>34N43</td>
<td>32P76</td>
<td>118</td>
<td>YGC8</td>
<td>32P76</td>
</tr>
<tr>
<td>34P44</td>
<td>108</td>
<td>34P44</td>
<td>34P44</td>
<td>32P78</td>
<td>118</td>
<td>YGC8</td>
<td>32P78</td>
</tr>
<tr>
<td>35P11**</td>
<td>108</td>
<td>YGC8</td>
<td>35P12</td>
<td>32P80</td>
<td>118</td>
<td>YGC8</td>
<td>32P80</td>
</tr>
<tr>
<td>35P15</td>
<td>108</td>
<td>YGC8, CL</td>
<td>35P12</td>
<td>32P82</td>
<td>118</td>
<td>HX1, LL</td>
<td>32P82</td>
</tr>
<tr>
<td>35P90**</td>
<td>108</td>
<td>RR</td>
<td>35P12</td>
<td>32P83</td>
<td>118</td>
<td>HX1, LL</td>
<td>32P83</td>
</tr>
</tbody>
</table>

This is the North America H1F list of Pioneer brand hybrids. Please check with your local Pioneer sales professional for availability of a more specific, localized list of Pioneer H1F hybrids. The H1F designation is assigned to elite Pioneer brand hybrids that are above the means based on data from over 15,000 Pioneer samples over the past three years.

** SMART III - Contains the SMART III trait for enhanced productivity.
** SMART - Contains the SMART trait for enhanced productivity.
** CL - Contains the CLEARFIELD trait for enhanced productivity.
** CL Plus - Contains the CLEARFIELD trait for enhanced productivity.
** RR - Contains the Roundup Ready trait for enhanced productivity.
** RR - Contains the Roundup Ready trait for enhanced productivity.

*YGC8 = Yields for high-gravity production.
*YGC8 = Yields for high-gravity production.

Pioneer, Industry Select, Pioneer, and the Pioneer logo are registered trademarks and service marks of Pioneer Hi-Bred International, Inc. The terms “Pioneer” and “Pioneer logo” are trademarks of Pioneer Hi-Bred International, Inc. and may be registered in various countries. This document contains information and reproductive products that are proprietary. All use of such information and products is subject to the terms and conditions of the respective licenses. For more information, please contact your local Pioneer sales representative or visit www.pioneer.com.
Identifying of Hybrids with High Fermentability

Monsanto’s research has proven there is a wide range of variability in ethanol production between different grain samples and hybrids.

Only a select group of hybrids meet the Processor Preferred criteria.

Source: http://www.monsanto.com/monsanto/us_ag/content/enhanced_value/pro_per/pro_per_corn/brochure.pdf
What Causes Hybrid Variability

- Variability due to genetics
 - Starch?
 - Protein?
 - Other constituents?
- Variability due to environment (phenotype)
 - Effect of location
 - Effect of crop year
Correlation between Starch and Ethanol
Starch Yield and Ethanol
(Dien et al 2002)

\[R^2 = 0.42 \]

Extractable Starch Yield (% db)

Ethanol (g/L)

Starch Yield and Sugars
(Pruiett 2002)

R² = 0.048

Starch Content and Ethanol Yield
(Haefele et al 2004)

Starch Yield and Ethanol Conc.
(Zhan et al, 2005)

Variability Due to Environment
Effect of Planting Location

Significant Interaction between Hybrids and Years

![Graph showing significant interaction between hybrids and ethanol concentration over years. The graph compares the average ethanol concentration and individual years for each hybrid. The x-axis represents the hybrids, and the y-axis represents the ethanol concentration (%v/v). The graph includes bars for each hybrid, with colored bars indicating the average, Year 1, and Year 2 values.]
Comparison of Ethanol Conc. for 4 Hybrids Over 3 Years

Ethanol Conc. Deviation from Average (%v/v)

N43-M9 N45-A6 N46-J7 N50-P5

-1.2 -0.7 -0.2 0.3 0.8
Granular Starch Hydrolyzing (GSH) Enzymes
Starch Granule Hydrolyzed by GSH Enzyme
Dry Grind Process

With GSH enzyme hybrid variability was only approximately 11% compared to 23% with conventional dry grind enzymes.
Development of New Transgenic Corn Specifically for Dry Grind Process
Dry-grind Process

Corn → Grinding (Hammermill) → Water → Enzymes → Liquefaction → Blending → Mash → Yeast & Enzymes → Saccharification & Fermentation → CO₂ → Overhead product (Recycled back) → Ethanol → Dehydration column → DDGS
Liquefaction Enzymes for Dry Grind Ethanol Process

- A new transgenic corn with endogenous liquefaction enzymes has been developed that is activated in presence of water at high temperature
Amylase Expressing Corn
500 ml Fermentations
Control vs 3, 5 and 10% amylase corn addition

500 ml Fermentations
Control vs 1, 2 and 3% amylase corn addition

DDGS Composition

<table>
<thead>
<tr>
<th>Components</th>
<th>3% amylase corn addition</th>
<th>Control Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Protein (%)</td>
<td>26.1 ± 0.2</td>
<td>25.8 ± 0.1</td>
</tr>
<tr>
<td>Crude Fat (%)</td>
<td>14.1 ± 0.1</td>
<td>13.6 ± 0.2</td>
</tr>
<tr>
<td>Crude Fiber (%)</td>
<td>6.6 ± 0.1</td>
<td>6.8 ± 0.1</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>3.78 ± 0.1</td>
<td>3.35 ± 0.1</td>
</tr>
</tbody>
</table>

No significant difference in composition of DDGS for 3% amylase corn addition and control treatment

Dry Milling (1 kg Procedure)

<table>
<thead>
<tr>
<th>Fractions</th>
<th>Control</th>
<th>0.1% Amy</th>
<th>1.0% Amy</th>
<th>10% Amy</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5 (Large Grits)</td>
<td>31.42</td>
<td>33.23</td>
<td>30.59</td>
<td>28.73</td>
</tr>
<tr>
<td>-10 + 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Small Grits)</td>
<td>29.88</td>
<td>28.91</td>
<td>31.79</td>
<td>31.46</td>
</tr>
<tr>
<td>-24 (Fines)</td>
<td>18.01</td>
<td>17.47</td>
<td>16.65</td>
<td>18.18</td>
</tr>
<tr>
<td>Germ</td>
<td>13.02</td>
<td>12.88</td>
<td>13.32</td>
<td>13.79</td>
</tr>
<tr>
<td>Pericarp</td>
<td>7.45</td>
<td>7.57</td>
<td>7.64</td>
<td>7.60</td>
</tr>
<tr>
<td>Total</td>
<td>99.78</td>
<td>100.06</td>
<td>99.98</td>
<td>99.76</td>
</tr>
</tbody>
</table>

Wet Milling (1 kg Procedure)

<table>
<thead>
<tr>
<th>Fractions</th>
<th>Control</th>
<th>0.1% Amy</th>
<th>1.0% Amy</th>
<th>10% Amy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solubles (%)</td>
<td>4.52</td>
<td>4.40</td>
<td>4.38</td>
<td>4.82</td>
</tr>
<tr>
<td>Germ (%)</td>
<td>6.21</td>
<td>6.35</td>
<td>6.43</td>
<td>6.74</td>
</tr>
<tr>
<td>Fiber (%)</td>
<td>12.36</td>
<td>11.72</td>
<td>11.98</td>
<td>11.90</td>
</tr>
<tr>
<td>Starch (%)</td>
<td>67.24</td>
<td>67.66</td>
<td>67.33</td>
<td>66.19</td>
</tr>
<tr>
<td>Gluten (%)</td>
<td>10.25</td>
<td>10.18</td>
<td>10.16</td>
<td>10.65</td>
</tr>
<tr>
<td>Total (%)</td>
<td>100.59</td>
<td>100.31</td>
<td>100.29</td>
<td>100.30</td>
</tr>
</tbody>
</table>

Corn for Modified Dry Grind Processes
Modified Dry Grind Ethanol Processes

- Wet fractionation technology: similar to wet milling
 - Enzymatic dry grind process (E-Mill process)
 - Recovers germ, pericarp fiber and endosperm fiber at front end of dry grind ethanol plant

- Dry fractionation technology: similar to dry milling
 - Dry degerm defiber process (3D process)
 - Recovers germ and pericarp fiber at front end of dry grind ethanol plant

These modified dry grind processes, recover valuable coproducts, improve efficiency of dry grind process and reduce volume of DDGS produced.
DDGS Utilization (2005)

- Dairy: 46%
- Beef: 39%
- Poultry: 4%
- Swine: 11%
Coproduct values

Coproduct Value ($/ton)

- corn
- DDGS

Cattle and Calves Inventory
Source: USDA-NASS 2002 Census of Agriculture

Beef Cows

Milk Cows
Poultry and Swine Inventory
Source: USDA-NASS 2002 Census of Agriculture

![Map of Pigs Inventory](image1)
![Map of Broiler and Other Meat Type Chicken Inventory](image2)
Wet Fractionation Technology: Enzymatic Dry Grind Process (E-Mill)

One bushel Corn

Quick Germ → Quick Fiber → E-Mill → Corn Dry Grind Facility

3.3 lb Germ

4 lb Pericarp Fiber

4 lb Endosperm Fiber

2.6 gal Ethanol

3.7 lb Residual DDGS

Ruminant Food

Nonruminant Food
Dry Fractionation Technology:
Dry Degerm Defiber Process (3D Process)

One bushel Corn → Dry Degerm Defiber Process → Corn Dry Grind Facility → 2.6 gal Ethanol

- 4 lb Germ
- 7.0 lb Residual DDGS
- + 4 lb Pericarp Fiber

Nonruminant Food

Ruminant Food
Effect of Hybrid Variability on Enzymatic Dry Grind Corn Process

5 Hybrids
N36-R6
N22-T8
NX2603
N34-F1

2 Locations
Waupun, WI
Brookings, SD

Enzymatic Dry Grind Process

Coproducts and Ethanol Yield
Coproducts and Ethanol Yield for Waupun, WI

<table>
<thead>
<tr>
<th>Fraction (% db)</th>
<th>N36-R6</th>
<th>N22-T8</th>
<th>NX2603</th>
<th>N34-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germ</td>
<td>9.18</td>
<td>9.22</td>
<td>9.41</td>
<td>8.85</td>
</tr>
<tr>
<td>Pericarp</td>
<td>8.62</td>
<td>7.79</td>
<td>8.61</td>
<td>6.04</td>
</tr>
<tr>
<td>Fiber</td>
<td>3.89</td>
<td>5.46</td>
<td>5.04</td>
<td>3.93</td>
</tr>
<tr>
<td>DDGS</td>
<td>7.38</td>
<td>8.14</td>
<td>8.29</td>
<td>8.31</td>
</tr>
<tr>
<td>Ethanol Conc. (% v/v)</td>
<td>13.41</td>
<td>14.60</td>
<td>14.34</td>
<td>13.35</td>
</tr>
</tbody>
</table>
Coproducts and Ethanol Yield for Brooking, SD

<table>
<thead>
<tr>
<th>Fraction</th>
<th>N36-R6</th>
<th>N22-T8</th>
<th>NX2603</th>
<th>N34-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germ</td>
<td>8.87</td>
<td>9.21</td>
<td>9.54</td>
<td>8.89</td>
</tr>
<tr>
<td>Pericarp Fiber</td>
<td>10.45</td>
<td>7.51</td>
<td>9.37</td>
<td>8.05</td>
</tr>
<tr>
<td>Endosperm Fiber</td>
<td>5.60</td>
<td>6.50</td>
<td>5.53</td>
<td>6.56</td>
</tr>
<tr>
<td>DDGS</td>
<td>8.01</td>
<td>10.83</td>
<td>9.34</td>
<td>8.63</td>
</tr>
<tr>
<td>Ethanol Conc. (% v/v)</td>
<td>13.40</td>
<td>12.93</td>
<td>13.56</td>
<td>13.38</td>
</tr>
</tbody>
</table>
Conclusions

- New Developments in Dry Grind Corn Processing
 - Significant variability in corn hybrids for dry grind ethanol production
 - 23% total variability
 - 75% of this variability is due to genetics and 25% is due to environment
 - Variability can be reduced with hybrid specific processing or by using GSH enzyme
 - Negligible or weak correlation between starch content or extractability and starch fermentability
 - Corn with endogenous liquefaction enzymes
 - Hybrid specific processing for conventional and modified dry grind processes to increase ethanol yield and coproduct quality