Effect of steam on the performance of Ca-based sorbents in calcium looping processes

Fabio Montagnaro
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Italy, fabio.montagnaro@unina.it

Eduardo Gais
University of Naples ‘Federico II’, Italy

Antonio Coppola
Istituto di Ricerche sulla Combustione, Consiglio Nazionale delle Ricerche, Italy

Piero Salatino
Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Italy

Fabrizio Scala
Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Italy

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv

Part of the [Chemical Engineering Commons](http://dc.engconfintl.org/fluidization_xv)

Recommended Citation
http://dc.engconfintl.org/fluidization_xv/32

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Effect of Steam on the Performance of Ca-Based Sorbents in Calcium Looping Processes

Antonio Coppola, Eduardo Gais, Gabriella Mancino, Fabio Montagnaro, Fabrizio Scala, Piero Salatino
Overview: the Ca-looping concept

Fluidization XV, May 22-27, 2016
- Québec, Canada

Effect of Steam on the Performance of Ca-Based Sorbents in Calcium Looping Processes
Overview: the Ca-looping concept

Sorbent-related Issues (1/2)

Decay of CO₂ Capture Capacity of the sorbent

- Sintering
- Presence of SO₂

Image:
- Chart showing the decay of CO₂ capture capacity over cycles.
Overview: the Ca-looping concept

Sorbent-related Issues (2/2)

Attrition/Fragmentation Phenomena

- Primary Fragmentation
- Secondary Fragmentation
- Attrition by Abrasion

Effect of Steam on the Performance of Ca-Based Sorbents in Calcium Looping Processes

Fluidization XV, May 22-27, 2016 - Québec, Canada
Overview: effect of steam

Effect of Steam on the Performance of Ca-Based Sorbents in Calcium Looping Processes

Fluidization XV, May 22-27, 2016 - Québec, Canada
Effect of Steam on the Performance of Ca-Based Sorbents in Calcium Looping Processes
Experimental

Lab-scale Fluidized bed (40mm-ID)

German Limestone (EnBW) (0.4-0.6 µm)

4 complete cycles + 5° Calcination

<table>
<thead>
<tr>
<th></th>
<th>Calcination stages</th>
<th>Carbonation stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>940°C</td>
<td>650°C</td>
</tr>
<tr>
<td>Test duration</td>
<td>20 min</td>
<td>15 min</td>
</tr>
<tr>
<td>Fluidization superficial velocity</td>
<td>0.7 m s⁻¹</td>
<td>0.6 m s⁻¹</td>
</tr>
<tr>
<td>Fluidizing gas composition (vol.)</td>
<td>70% CO₂+30% air</td>
<td>15% CO₂+85% air</td>
</tr>
</tbody>
</table>

ste_cal

| Fluidizing gas composition (vol.) | 10% steam+70% CO₂+20% air | 15% CO₂+85% air |

ste_car

| Fluidizing gas composition (vol.) | 70% CO₂+30% air | 10% steam+15% CO₂+75% air |

ste_cal_car

| Fluidizing gas composition (vol.) | 10% steam+70% CO₂+20% air | 10% steam+15% CO₂+75% air |
Results

![Graph showing results of dry, ste_cal, ste_car, and ste_cal_car conditions over four carbonation numbers.](image)

Graph Legend:
- **dry**
- **ste_cal**
- **ste_car**
- **ste_cal_car**

X-axis: Carbonation #
Y-axis: \(\gamma \) [g g\(^{-1}\)]
Results
Results

<table>
<thead>
<tr>
<th></th>
<th>S_{BET} [m2 g$^{-1}$]</th>
<th>V_{TOT} [mm3 g$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>dry</td>
<td>8.8</td>
<td>7.9 (1.1 micro+6.8 mesoporosity)</td>
</tr>
<tr>
<td>ste_cal</td>
<td>10.4</td>
<td>11.7 (4.9 micro+6.8 mesoporosity)</td>
</tr>
<tr>
<td>ste_car</td>
<td>8.4</td>
<td>8.2 (0.6 micro+7.6 mesoporosity)</td>
</tr>
<tr>
<td>ste_cal_car</td>
<td>10.1</td>
<td>10.2 (5.0 micro+5.2 mesoporosity)</td>
</tr>
</tbody>
</table>
Results

Effect of Steam on the Performance of Ca-Based Sorbents in Calcium Looping Processes

Fluidization XV, May 22-27, 2016 - Québec, Canada

di [mm]
0.0 0.1 0.2 0.3 0.4 0.5
cumulative x(di) [-]
0.0001
0.001
0.01
0.1
1
1st calcination
1st carbonation ...
2nd carbonation
3rd calcination
3rd carbonation
4th calcination
4th carbonation
5th calcination

a) dry
0.86±0.32%
b) ste_cal
0.72±0.42%
c) ste_car
0.96±0.27%
d) ste_cal_car
1.14±0.48%
Conclusions

- Steam is beneficial (CO₂ uptake)
- Calcination development of accessible porosity CO₂ uptake in the order of 10%
- Carbonation positive role of steam as a “catalyst” of CO₂ diffusion through the sorbent CaCO₃-based product layer.
- Calcination + carbonation: synergistic effects
- Fragmentation propensity: during calcination induces a more resistant external particle structure.
- Results highlight the positive role that the presence of steam in realistic calcium looping conditions
Thank you for your attention

Acknowledgments

Authors are grateful to Dr. Luciana Lisi and Mr. Luciano Cortese (IRC-CNR) for their support in carrying out porosimetric and SEM analyses.