5-23-2016

Modelling study of two chemical looping reforming reactor configurations: Looping vs. switching

Joana F. Morgado
University of Coimbra, Portugal ; Norwegian University of Science and Technology, Norway, joana.f.morgado@sintef.no

Schalk Cloete
SINTEF Materials and Chemistry, Flow Technology Department, Norway

John Morud
SINTEF Materials and Chemistry, Flow Technology Department, Norway

Thomas Gurker
ANDRITZ AG, Austria

Shahriar Amini
SINTEF Materials and Chemistry, Flow Technology Department, Norway

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv

Part of the [Chemical Engineering Commons](http://dc.engconfintl.org/fluidization_xv)

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Modelling study of two Chemical Looping Reforming reactor configurations: Looping vs. Switching

Joana Francisco Morgado2,3, Schalk Cloete1, John Morud1, Thomas Gurker4
Rosa M. Quinta-Ferreira3, Shahriar Amini1*

1 SINTEF Materials and Chemistry, Flow Technology Department, Norway
2 Norwegian University of Science and Technology, Dept. of Energy and Process Engineering, Norway
3 University of Coimbra, Dept. of Chemical Engineering, Portugal
4 ANDRITZ AG GmbH, Austria

Presenter e-mail: joana.f.morgado@ntnu.no

Montebello, 23 May 2016
Outline

1. Objective
2. CLR vs. GSR principles
3. Simulations
4. Results and discussion
5. Conclusions
2. Objective of the work

To compare the performance of two pre-combustion reactor concepts

- Chemical Looping Reforming (CLR)
- Gas Switching Reforming (GSR)
3. CLR vs. GSR

<table>
<thead>
<tr>
<th>CLR</th>
<th>GSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Two interconnected FBR reactors (AR and FR);</td>
<td>• One FBR for oxidation and reduction of the OC – switching concept;</td>
</tr>
<tr>
<td>• OC continuously transported between AR and FR;</td>
<td>• Alternating feed of air and fuel to the reactor unit;</td>
</tr>
<tr>
<td>• No mixing between N\textsubscript{2} and fuel;</td>
<td>• Undesired mixing between N\textsubscript{2} and fuel;</td>
</tr>
<tr>
<td>• Scale-up and operational challenges.</td>
<td>• Facilitates scaling-up under pressurized conditions.</td>
</tr>
</tbody>
</table>
4. Simulations

1-D phenomenological model for FBR

- **Generic formulation** based on the generic model developed by Abba et al. (2003)\(^1\);
- Uses an **averaging probabilistic approach** by Thompson et al. (1999)\(^2\);
- **Two-phase** model by Toomey and Johnstone (L- and H-phases) \(^3,4\);

Differential Balances

- **Mass balance**
 - Gas total mass balance
 - Gas species mass balance for each phase
 - Total solids species mass balance
- **Total Energy balance**
- **Pressure Balance**

Numerical scheme:

- Method of lines (MATLAB routine *ode15s*)
- Finite volume method (discretization in space)
 - Non-uniform grid
 - Convective term: 1\(^{st}\) order upwind scheme
 - Diffusion term: central differences scheme

4. Simulations

Reactions and Kinetics

Reforming stage

Reforming[1]

Ni as catalyst

\[\text{CH}_4 + \text{H}_2\text{O} \leftrightarrow \text{CO} + 3\text{H}_2 \]

\[\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2 \]

\[\text{CH}_4 + 2\text{H}_2\text{O} \leftrightarrow \text{CO}_2 + 4\text{H}_2 \]

Fuel Reactor

Oxidation of the oxygen carrier[2]

\[\text{Ni} + \frac{1}{2} \text{O}_2 \leftrightarrow \text{NiO} \]

Oxidation stage

Reduction of the oxygen carrier[2]

\[\text{CH}_4 + 4\text{NiO} \leftrightarrow 4\text{Ni} + \text{CO}_2 + 2\text{H}_2\text{O} \]

\[\text{H}_2 + \text{NiO} \leftrightarrow \text{Ni} + \text{H}_2\text{O} \]

\[\text{CO} + \text{NiO} \leftrightarrow \text{CO}_2 + \text{Ni} \]

Reduction stage

Air Reactor

4. Simulations

Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam flowrate</td>
<td>170 ton/h</td>
</tr>
<tr>
<td>Fuel flowrate</td>
<td>250 ton/h</td>
</tr>
<tr>
<td>Maximum temperature</td>
<td>1100 °C</td>
</tr>
<tr>
<td>Fuel inlet temperature</td>
<td>205 °C</td>
</tr>
<tr>
<td>Steam inlet temperature</td>
<td>400 °C</td>
</tr>
<tr>
<td>Operating pressure</td>
<td>17.3 bar</td>
</tr>
<tr>
<td>OC density</td>
<td>3446 kg/m3</td>
</tr>
<tr>
<td>Particle diameter</td>
<td>250 µm</td>
</tr>
<tr>
<td>Reactor diameter</td>
<td>6 m</td>
</tr>
<tr>
<td>Reactor height</td>
<td>7 m</td>
</tr>
<tr>
<td>Axial resolution</td>
<td>20 cells</td>
</tr>
</tbody>
</table>

How to compare these two technologies?

Same simulation parameters and physical properties

Study variable: Degree of Oxygen Carrier utilization

How to adjust this parameter?
4. Simulations

CLR: Oxygen carrier flux

↓ OC flux: ↑ OC residence time

GSR: Cycle time flux

↑ cycle time: ↑ reduction + ↑ oxidation

Higher oxygen carrier conversion

<table>
<thead>
<tr>
<th>Degree of OC utilization (%)</th>
<th>CLR</th>
<th></th>
<th>GSR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OC flux (kg/m² s)</td>
<td>Oxidation stage time (s)</td>
<td>Reduction stage time (s)</td>
</tr>
<tr>
<td>10</td>
<td>466</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>233</td>
<td>68</td>
<td>34</td>
</tr>
<tr>
<td>40</td>
<td>116.5</td>
<td>198</td>
<td>99</td>
</tr>
<tr>
<td>60</td>
<td>82.4</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>80</td>
<td>58.25</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5. Results: Profiles

Chemical Looping Reforming: Fuel Reactor

- Reforming reactions dominate at the beginning of the reactor → system far from equilibrium conditions → production of H₂ → density decrease
- Reduction reactions dominate at the end;
- Low amount of NiO through the bed;
- Temperature almost constant → good axial mixing

Maximum values: 2.94 kg/m³ for the gas density, 1 for the void fraction, 2.4 m/s for the superficial velocity and 989 °C for the temperature
5. Results

Gas Switching Reforming

- O₂ totally consumed in the oxidation stage;
- Undesired mixture of N₂ with fuel → reduces CO₂ capture performance;

1. Oxidation
2. Reduction
3. Reforming
5. Results

Performance Measures

CH$_4$ conversion

CO selectivity

H$_2$ production performance

Higher OC utilization

- Lower reduction temperature \rightarrow low CH$_4$ conversion (by reforming endothermic reactions) \rightarrow productivity of H$_2$ decreases
- Lower CO selectivity \rightarrow WGS reaction

Lower OC utilization

- Lower CO selectivity \rightarrow To supply heat

Higher OC utilization

- Lower CH$_4$ conversion \rightarrow Reforming stage is higher
- Lower H$_2$ productivity \rightarrow lower CH$_4$ conversion

Lower OC utilization

- Higher amount of N$_2$ mixed with fuel \rightarrow Short cycle times
6. Conclusions

1. CLR
 - Lower degree of OC utilization (higher OC circulation rate) → higher temperature in fuel reactor → better reforming performance
 - However, high OC circulation rate can bring practical and economic challenges

2. GSR
 - Lower degree of OC utilization (shorter stage times) → higher temperature in reforming stage → higher CH₄ conversion and H₂ production
 - However, undesired mixing of N₂ with CO₂ and syngas increases with shorter stage times
6. Conclusions

3. CLR vs. GSR

- H₂ production and CO conversion is higher in GSR
- Fuel conversion is higher for CLR with higher CO₂ content
- CLR is best suited to thermal power production with pre-combustion CO₂ capture and GSR to pure H₂ production
Thank you for your Patience!!!