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Twinning-like lattice reorientation without a
crystallographic twinning plane

Bo-Yu Liu!, Jian Wang?, Bin Li3, Lu Lu?, Xi-Yan Zhang®, Zhi-Wei Shan', Ju Li"®, Chun-Lin Jia%,
Jun Sun! & Evan Ma'”’

Boundary-motion-based plasticity mechanism

Twinning on the {1012} plane is a common mode of plastic deformation for hexagonal-close-
packed metals. Here we report, by monitoring the deformation of submicron-sized
single-crystal magnesium compressed normal to its prismatic plane with transmission
electron microscopy, the reorientation of the parent lattice to a 'twin’ lattice, producing an
orientational relationship akin to that of the conventional {1012} twinning, but without a
crystallographic mirror plane, and giving plastic strain that is not simple shear. Aberration-
corrected transmission electron microscopy observations reveal that the boundary between
the parent lattice and the ‘twin’ lattice is composed predominantly of semicoherent basal/
prismatic interfaces instead of the {1012} twinning plane. The migration of this boundary is
dominated by the movement of these interfaces undergoing basal/prismatic transformation
via local rearrangements of atoms. This newly discovered deformation mode by boundary
motion mimics conventional deformation twinning but is distinct from the latter and, as such,

broadens the known mechanisms of plasticity.



Q#1: Typical plasticity mechanisms in Mg ?




HCP Mg: only one set of hexagonal close packed flat planes for easy slip
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What about strain in the c direction ?



Need “actions” on non-close packed, corrugated (pyramidal or prismatic) planes
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c+a displacements are “very long”
to restore crystal registry
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What about strain in the c direction ?



Reorientation of the crystal to accommodate/produce plastic strain
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A common way of doing this is deformation twinning



Deformation twinning (DT) reorients the crystal lattice
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During plastic deformation, stress reorients part of the crystal to a new orientation
in which the lattice structure is identical to that in matrix, and atoms in the two parts
keep a mirror relationship through an invariant low-index crystal plane.
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In Mg, extension DT
on {10-12} type twinning plane
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But, the DT mechanism in Mg is quite involved:
a twin shear (twinning dislocation)
on a specific

twinning plane (invariant, mirror) ?

(10-12) is not a flat plane, but double layered (corrugated), w/ small spacing

For (10-12) DT, the twin shear via a disconnection can only move
% of the atoms to the correct locations



Q#2: Something else could also be happening ?

TEM suggests that something unusual is happening with this DT mode in Mg




We used TEM to look at the deforming Mg CAMP NANO
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Micro/nano-scaled magnesium sample
for in-situ TEM mechanical testing

Migrating (twin) boundary, producing strains (in axial and transverse directions)



Zone axis: [0001]
[1120] (Figure 2¢)

Cs-corrected STEM image of
a Nano-milled (<90 nm) sample

Terrace-like interface
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(10-12) DT could involve,
or proceed side-by-side with,

“another” mechanism during boundary migration?



Q#3: Detailed features unexpected
from deformation twinning ?

Let’s compare the details w/ DT, under TEM, post mortem




If it is pure {10-12} twinning, the lattice will have a mirror symmetry, by
86.3°across the twinning plane.

In diffraction pattern, {10-12} spots overlap with the original ones, as the
twin boundary {10-12} is shared by both the
matrix and the twin (the parent (1-102) plane
is parallel to the twin (-1102) plane).
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Angle can be 52°, not the expected 43°
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Zone axis: [0001]
[1120] (Figure 2¢)

Cs-corrected STEM image of
a Nano-milled <90 nm sample

Terrace-like interface
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At atomic resolution: STEM image of the boundary

(Twin)basal/prismatic(Matrix) interface:

BP interface
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Blow-up of the previous 2 images:
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12) DT, there are many interface regions undergoing the ~90°

So, accompanying (10

reorientation; there the interface is not (10-12), nor a mirror invariant twinning plane!



Q#4: Could also happen in larger samples ?

Seen also in large grains of conventional Mg alloys ...
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Larger grains in AZ31 Mg alloy sheet (30 mm x 30 mm x 22 mm) w/ equi-axed
and strongly textured grains (average grain size ~34 um). The compression

loading was applied perpendicular to [0001] at a strain rate of 103s* and a total
strain of ~7%.



AZ31 Mg alloy sheet (30 mm x 30 mm x 22 mm) w/ equi-axed and strongly
textured grains (average grain size ~34 um). The compression loading was
applied perpendicular to [0001] at a strain rate of 103s! and a total strain of ~7%.
Note the orthogonal steps. This morphology is more obvious near twin tips.




Q#5: Why so many basal-prismatic boundaries?

Just twin boundary relaxed into steps ?

Or,

action not on (10-12) plane in the first place?
no twinning plane (invariant, mirror)?

no well-defined twin shear (twinning dislocations)?

involving other processes ......




MD simulation shows basal-prismatic conversion at the B-P interface




Proposal: basal-prismatic transformation

B @

red (standing-up) => green (lying-down)

shaded, inclined plane); hence, they satisfy the twin relationship.
Shuffling is required to correct the distortion in the new hep lattice
such that the correct stacking sequence and the ¢/a ratio can be
established. Note that the shaded twinning plane has to be distorted
when the atoms of the twin lattice shuffle to the correct positions, i.e.
the invariant plane strain condition for deformation twinning breaks

We notice that

across the (10-12) plane (purple),
the original bottom basal plane
and the front prismatic plane form
a 90° angle.

If the front (prismatic) plane can

be re-configured into a flat basal
plane (of the twin lattice), it
approaches a mirror relationship
across (10-12) with the bottom basal
plane.

In other words, such a 90° “lattice
reconstruction” is close to what the
twinning action produces!

If we achieve this prismatic-basal
conversion, not via action on (10-
12), the net result can still be close
to that of (10-12) twinning.



Like DT, the resulting strain along <c> is 6.7% for Mg

Parent Twin

hP hT

Figure 3. Separation of the parent and the twin lattice in Figure 2.
After {1012} < 1011 > twinning, the parent lattice is reoriented by
~90° around < 1210 >, which generates a misfit strain between the
parent and the twin lattice along the c-axis of the parent:
e~ (hy —hp)/hp = (V3 —=7)/y (7 is the c¢/a ratio). Thus, for hcp
metals with 7 <+/3, a positive tensile strain is generated, i.e. tension
twinning occurs; for hep metals with Mg 7 > /3, a negative strain is
generated, 1.e. compression twinning occurs.

For Mg, y =c/a=1.633, very close to “ideal” (Co is similar, but y=1.58 for Ti)



In MD simulation,
conversion can be
accomplished via
atomic shuffling
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The far-field parent
and “twin” lattices

still mimic the (10- i
12) DT orientational _.
relationship,
approaching ~90° ; -
Soitisa “(10-12) ke
twinning-like lattice

reorientation, but

the action is not on

the crystallographic

(10-12) plane !

(1100) (0001)

This is not just deformation twinning, although it accompanies the latter:
there is no mirror relationship at the moving boundary, nor uniform twinning shear



Q#6: Why Is the basal-prismatic conversion “easy” ?




For Mg, a lateral HCP embryo is

already “waiting” to take shape

in the stand-up HCP

(b)

This B-P conversion only requires short-

[0001]

distance collective atomic rearrangements

' shuffle distances are relatively small (0.02
dla to 0.09 nm);
=Py G Te

L =

Maybe, atomic shuffling for the most part,

+ minor/no help from pre-existing

interfacial defects (dislocations) ?



O#7: Different from “stress coupling with GB”?

Not just shear strain




Tn —V

GB=>

GB

Acta Materialia 54 (2006) 4953-4975
“Shear stresses coupled to a GB can induce its normal motion”
Coupling grain boundary motion to shear deformation

John W. Cahn ®, Yuri Mishin ®*, Akira Suzuki °



Not shear (twinning dislocation creating shear
step on one side),

but shortening in z direction and swelling
sideways on both sides

zone axis

<2-1-10> Bo-Yu Liu et al.,
Nature Communications (2014)
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Q#8: Can we explain the 52°
(or any other) inclination angle ?

Why would the boundary look straight (from a distance),

but can have an unexpected angle (when zoomed in)?




The angle seen at lower mag is due to a combination of alternating BP and PB interfaces

The “mixed” boundary can be of any angle; if BP-PB is 50-50, => ~45°, close to {10-12}
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Q#9: Why would this B-P conversion
accompany (10-12) twinning ?

The B-P action (under high stresses) appears to be an alternative route

to quickly produce strain, especially when TB motion becomes sluggish.




“Flexible”: BP interfaces intermixed w/ {10-12} twin boundary

® Only slightly less favorable interface energy (¥150 mJ/m?, < those of other interfaces)

® Kinetically favorable (helps boundary mobility) and alternative pathway in energy
landscape
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Vol 463|21 January 2010|doi:10.1038/nature08692

® The stress for {10-12} twinning increases with decreasing sample size due to limited
mobility or availability of twinning dislocations (disconnections)

nature

LETTERS

Strong crystal size effect on deformation twinning

Qian Yu', Zhi-Wei Shan'?, Ju Li%, Xiaoxu Huang®, Lin Xiao', Jun Sun' & Evan Ma"?

Deformation twinning'™ in crystals is a highly coherent inelastic
shearing process that controls the mechanical behaviour of many
materials, but its origin and spatio-temporal features are shrouded
in mystery. Using micro-compression and in sifu nano-compression
experiments, here we find that the stress required for deforma-
tion twinning increases drastically with decreasing sample size of
a titanium alloy single crystal”, until the sample size is reduced
to one micrometre, below which the deformation twinning is
entirely replaced by less correlated, ordinary dislocation plasticity.
Accompanying the transition in deformation mechanism, the
maximum flow stress of the submicrometre-sized pillars was
observed to saturate at a value close to titanium’s ideal strength®"’.
We develop a ‘stimulated slip” model to explain the strong size
dependence of deformation twinning. The sample size in transi-
tion is relatively large and easily accessible in experiments, making
our understanding of size dependence’ " relevant for applications.

40

micrometres™®?' ™, It is then interesting to see what will happen

when the sample dimensions are reduced to the same scale or even
smaller.

We used a bulk square Ti-5at.% Al single crystal as the starting
material, from which all the samples in this study were cut. The
experimental details are described in the Methods and in the
Supplementary Information. Supplementary Fig. 2 shows the beha-
viour of the bulk single crystal under [0001] compression. Profuse
deformation twinning is seen, in agreement with the literature®. In
micro-compression tests of pillars with d= 1.0 um, almost all the
deformed samples showed obvious shearing traces on the surfaces.
Examples are shown in Fig. la and b. A trace analysis of the
d = 1.0 pm micro-pillar showed that the shearing occurred on the
{1122} plane, which is a common twinning plane in hexagonal-close-
packed Ti and its alloys. Electron backscatter diffraction (EBSD)
analysis of these deformed pillars provides evidence that deformation




Q#10: What are the take-home messages ?




Take-home messages:

Akin to normal (10-12) DT, basal-prismatic conversion reorients the
lattice, migrates the boundary interface and produces the same plastic
strain. But it is not straight DT per se, providing an alternative and
sometimes accompanying pathway for plastic deformation in Mg
(especially when DT on that plane encounters difficulties).

A mixture of this local twinning-like lattice reconstruction together
with DT is a reason why the “twin boundary” observed in previous
experiments can deviate significantly from 43°, while the global
orientational relationship is always consistent with (10-12) twinning.

The “reconstruction at BP interface” mechanism may become more
active when stresses are high (high strain rate, small sample, ...); a high
stress (or strain rate) forces faster “twin” boundary movement, which
may be enabled by BP transformation.
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