6-21-2016

SOx trapping performances of cuo based silica mesoporous adsorbents for desulfurization of industrial flue gas stream

Sophie Dorge
Université de Haute Alsace, France, sophie.dorge@uha.fr

Marc Berger
Université de Haute Alsace ; ADEME - Agence de l’Environnement et de la Maîtrise de l’Energie, France

Habiba Nouali
ersité de Haute Alsace, France

Laure Michelin
ersité de Haute Alsace, France

Ludovic Josien
ersité de Haute Alsace, France

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/gpe2016

Part of the Chemical Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in 5th International Congress on Green Process Engineering (GPE 2016) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
SOx trapping performances of CuO based silica mesoporous adsorbents for the desulfurization of industrial flue gas stream

Industrial SOx emissions

Production of energy

Fossil fuels combustion → Gaseous pollutants

Power Plant (e.g. turbines)
Industrial boilers

SOx (SO$_2$ + SO$_3$)

SO$_x$: negative impact on:
- Environment (acid rain, precursors of secondary aerosols)
- Human health
Industrial SOx emissions abatement

SOx emissions ➞ Strict Regulation at industrial level ➞ SOx emissions abatement

Industrial Emissions Directive (IED) 2010/75/EU

Traditional Desulfurization processes: wet and dry scrubbing

- Efficient
- Non regenerative
- Produce additional greenhouse gas CO₂ and large amount of solid and liquid wastes
- High energy cost

Alternative solution: reversible SOx trapping on solid adsorbents

Promising material: supported CuO

Adsorbent requirements

Oxidation catalyst: \(\text{SO}_2 + \frac{1}{2} \text{O}_2 \xrightarrow{\text{CuO}} \text{SO}_3 \)

SO₃ chemisorption: \(\text{SO}_3 + \text{CuO} \xrightarrow{\text{CuSO}_4} \text{CuSO}_4 \)

Regeneration: \(\text{CuSO}_4 \xrightarrow{\Delta (600-700^\circ C)} \text{SO}_3 + \text{CuO} \)
Elaboration of a regenerable adsorbent with high SOx adsorption performances

- Inert in regards with SOx
- High specific surface area and mesoporous volume
- Easy diffusion of SOx in the porous network

Organized Mesoporous Silica supports

SBA-15

Copper incorporation: wet impregnation in aqueous solution

Characterizations of the adsorbents: N₂ physisorption/XRF/XRD/ and TEM analyses

Study of SOx adsorption capacity during cycling experiments at laboratory scale in fixed bed reactor
Adsorbents synthesis

SBA-15

Copper nitrate

Wet impregnation in aqueous solution: \(T_{\text{ambient}} \)

Drying: 45°C during 12 hours

Calcination step:
500°C during 6 hours (ramp of 1°C.min\(^{-1}\))
in fixed bed reactor under synthetic air flow (60 NL.min\(^{-1}\))

Three metal loadings: 8.8 wt.% - 15.6 wt.% - 31.7 wt.% of CuO

CuO8.8/SBA-15

CuO15.6/SBA-15

CuO31.7/SBA-15
SO\textsubscript{2} adsorption tests

Cycling experiments in fixed bed reactor

SO\textsubscript{2} adsorption conditions:
- reactor: quartz, \(\Phi_{\text{internal}} = 6 \text{ mm} \)
- adsorbent shaping: 250-400 \(\mu \text{m} \),
- mass: 150 to 200 mg
- gas feed composition: 250 ppm SO\textsubscript{2} + 10 vol.% O\textsubscript{2} in N\textsubscript{2}
- GHSV = 25000 h-1
- temperature: 400°C

Regeneration conditions:
Two different procedures at two temperatures:

1. Under N\textsubscript{2} at 600°C
2. Under H\textsubscript{2} (0.5 vol.% in N\textsubscript{2}) at 280°C
 (with regen. 1 under N\textsubscript{2} at 600°C)
Textural characterization

N₂ physioption isotherms

- No alteration of the mesoporous structure after impregnation and calcination steps
- Decrease of the BET surface area, pore size and porous volume after copper incorporation, more pronounced for higher copper loadings
Adsorbents characterizations

TEM analyses

- **CuO8.8/SBA-15**
- **CuO15.6/SBA-15**
- **CuO31.7/SBA-15**

- XRD analyses: no diffraction peak corresponding to a copper crystalline phase
- TEM analyses: no copper particles observed: copper highly dispersed for all materials, probably formation of Cu-O-Si species\(^a,b\)

Synthesis conditions used prevent copper sintering phenomenon and generate copper species in strong interaction with the support SBA-15

Results

SO₂ adsorption tests: cycling experiments

Regeneration under N₂ at 600°C

CuO8.8/SBA-15

SO₂ breakthrough curves

CuO31.7/SBA-15

SO₂ breakthrough curves

CuO15.6/SBA-15

SO₂ breakthrough curves

 No deactivation, even after 9 cycles
 Strong increase of performances from the 2nd SO₂ chemisorption

 The best SO₂ adsorption capacity during adsorption 1
 Important deactivation from adsorption 2

 Interesting SO₂ adsorption capacities obtained along cycling experiments with a relatively weak deactivation
 The best performances after 5 cycles
SO₂ adsorption tests: cycling experiments

Regeneration under N₂ at 600°C

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>SO₂ adsorption capacity at 75 ppm (mgSO₂·g⁻¹)</th>
<th>Copper sulfation rate at 75 ppm (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle</td>
<td>Cycle</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CuO8.8/SBA-15</td>
<td>21</td>
<td>37</td>
</tr>
<tr>
<td>CuO15.6/SBA-15</td>
<td>44</td>
<td>75</td>
</tr>
<tr>
<td>CuO31.7/SBA-15</td>
<td>162</td>
<td>54</td>
</tr>
</tbody>
</table>

* SO₂ adsorption capacity calculated by integration of the SO₂ curve until the outlet SO₂ concentration reaches 75 ppm
** Ratio of SO₂ chemisorbed at 75 ppm/total Cu content (mol/mol)

Adsorbents CuO/SBA-15 behavior strongly depends on copper loading

- **Low and intermediate copper loadings**
 - Formation of Cu⁺ species during the first regeneration, more efficient in the desulfurization reaction

- **High copper loading**
 - High SO₂ storage capacity during cycle 1
 - Strong deactivation during cycle 2 due to strong copper sintering

The best adsorbent
Results

Characterizations after SO\textsubscript{2} adsorption experiments

XRD analyses

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO\textsubscript{8.8}/SBA-15</td>
<td>after 9 cycles, copper species remain highly dispersed</td>
</tr>
<tr>
<td>CuO\textsubscript{15.6}/SBA-15</td>
<td>small XRD peaks of CuO</td>
</tr>
<tr>
<td>CuO\textsubscript{31.7}/SBA-15</td>
<td>sharp XRD CuO peaks : presence of large CuO crystallites in high quantity</td>
</tr>
</tbody>
</table>

TEM analyses

- CuO\textsubscript{8.8}/SBA-15: Highly dispersed copper species.
- CuO\textsubscript{15.6}/SBA-15: Small XRD peaks of CuO.
- CuO\textsubscript{31.7}/SBA-15: Sharp XRD CuO peaks with large crystallites.
SO$_2$ adsorption tests: cycling experiments

Regeneration under H_2 at 280°C

![Graph showing SO$_2$ adsorption over time](image)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>SO2 adsorption capacity at 75 ppm (mg${SO_2}$·g$_{ads}^{-1}$)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
</tr>
</tbody>
</table>

* SO$_2$ adsorption capacity calculated by integration of the SO$_2$ curve until the outlet SO$_2$ concentration reaches 75 ppm

- Regeneration at low temperature (280°C) under H_2 (0.5 vol.%) is efficient
- No H_2S is emitted during regeneration under H_2
- Energetic and financial advantages
Conclusions

- Synthesis of CuO/SBA-15 based adsorbents with highly dispersed copper species by wet impregnation in aqueous solution

- Interesting SO$_2$ chemisorption capacities along cycling experiments

- Significant increase of the adsorbent efficiency after thermal treatment at 600°C: generation of Cu$^+$ species, more active in desulfurization reaction

- The adsorbents’ behavior strongly depends on copper loading: deactivation increases with copper loading

- Optimum copper loading to ensure sufficient SO$_2$ adsorption capacity and weak deactivation

- Total regeneration under H$_2$ at 280°C without H$_2$S emissions
Thanks for your attention!

Acknowledgments:
- Philippe Fioux
- Loïc Vidal
- Damaris Kehrli
- All my colleagues!
SOx trapping performances of CuO based silica mesoporous adsorbents for the desulfurization of industrial flue gas stream

P. Gaudin¹, M. Berger¹,²,⁵, S. Dorge², H. Nouali¹, L. Michelin¹, L. Josien¹, M. Vierling³, M. Molière⁴, E. Fiani⁵, D. Habermacher², J. Patarin¹, J.F. Brilhac²

1 Equipe Matériaux à Porosité Contrôlée, Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361, Université de Haute-Alsace, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex, France

2 Laboratoire Gestion des Risques et Environnement, Université de Haute-Alsace, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex, France

3 GE Energy, 20 avenue du Marechal Juin, 90007 Belfort Cedex, France

4 Université de Technologie de Belfort-Montbéliard, Campus de Sévenans, 90010 Belfort Cedex France

5 ADEME - Agence de l'Environnement et de la Maîtrise de l'Energie, 20 avenue du Grésillé - BP 90406, 49004 Angers Cedex 01, France