Summer 6-26-2014

Mechanical stability limits of bi-layer thermal barrier coatings

Mario Rudolphi
DECHEMA-Forschungsinstitut, rudolphi@dechema.de

Mathias Galetz
DECHEMA-Forschungsinstitut

Michael Schutze
DECHEMA-Forschungsinstitut

Martin Frommherz
IfW, Technische Universität Darmstadt

Alfred Scholz
IfW, Technische Universität Darmstadt

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/thermal_barrier_iv

Part of the Materials Science and Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Thermal Barrier Coatings IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Mario Rudolphi, Mathias Galetz, Michael Schutze, Martin Frommherz, Alfred Scholz, Mathias Oechsner,
Emine Bakan, Robert Vassen, and Werner Stamn
Mechanical Stability Limits of Bi-Layer Thermal Barrier Coatings

1DECHHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
2Fachgebiet und Institut für Werkstoffkunde, Technische Universität Darmstadt, Grafenstr. 2, 64283 Darmstadt, Germany
3Forschungszentrum Jülich GmbH, IEK-1, 52425 Jülich, Germany
4Siemens Power Generation, Mellinghofer Str. 55, 45473 Mülheim an der Ruhr, Germany

Thermal Barrier Coatings IV, Irsee, 26.06.2014
Acknowledgement

Project Partners:

M. Frommherz,
A. Scholz,
M. Oechsner

E. Bakan
R. Vaßen

High Temperature Materials research group of the DECHHEMA Research Institute

Financial support:

DFG
FVV

MAN Diesel & Turbo

SIEMENS

Rolls-Royce
Ongoing effort to increase operating temperature / efficiency

However, the temperature limit of 7YSZ is around 1250°C due to phase transformations above this temperature [1] → Search for new materials / new TBC solutions

Approach – Bi-Layer TBC

Bi-Layer Concept:
- surface temperatures > 1250 °C
- crack resistance to TGO growth induced stresses
- avoiding unwanted reactions between GZO and TGO

GZO: Gd$_2$Zr$_2$O$_7$ (APS)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS YSZ</td>
<td>100µm</td>
</tr>
<tr>
<td>TGO bond coat</td>
<td>250µm</td>
</tr>
<tr>
<td>Ni-base substrate</td>
<td></td>
</tr>
</tbody>
</table>

- Optimization of spray process
- Sample manufacturing
- Oxidation testing
- Mechanical testing (Charalambides test, G_{ic})
- TGFM testing

- Oxidation testing
- Mechanical testing (4-point bending test, ε_c)
- Lifetime modeling
4-Point Bending

50kN Universal Testing Machine

Testing was performed at RT
4-Point Bend Testing – TBC in Tension

1. Segmentation

Mode I failure
TBC outer fiber strain

2. Delamination

Mode II failure
TBC/BC interface strain
4-Point Bend Testing – TBC in Compression

1. Delamination

not always observed, → strong interface

1. Delamination

Mode I failure
TBC/BC interface strain

2. Shear cracking

Mode II failure
TBC outer fiber strain
Experimental Results

Compressive Loading of TBC, Bi-Layer System
Two distinct peaks can be identified in the acoustic emission signal under compressive loading!

1.

2.

What are the individual peaks?
4-PB Results - Compression

1. 4-PB in compression

2. 500h 1050°C

Outer fiber strain [%]

AE Energy

1. GZO shear failure

2. YSZ shear failure

Thermal Barrier Coatings IV, Irsee, 26.06.2014
Tensile Loading of TBC, Bi-Layer System
4-PB Results - Tension

500h 1050°C
What are the individual peaks?

- Tensile geometry does not lead to well separated peaks
- Some samples show gradually increasing AE signal at the beginning

However, maybe 3 signals can be identified:

1. 2. 3.
Macroscopic images do not provide sufficient insight. Only final failure can be observed.

1. Segmentation failure of GZO-layer
2. Delamination of GZO along GZO/YSZ interface
3. Segmentation failure of YSZ layer
Critical Strain Values

Bi-Layer TBC
Isothermal Oxidation 1050°C

→ max. tolerable strain at TBC/BC interface
May be used in similar manner as SN-curves for lifetime assessment
Fracture Mechanics Approach

Griffith-Criterion:
\[\sigma_c = \frac{K_c}{\sqrt{\pi c}} \]
\[\varepsilon = \frac{\sigma}{E} \]

Critical Strain:
\[\varepsilon_c = \frac{K_{lc}}{f \cdot E_{TBC} \sqrt{\pi c}} \]

Geometry Factor
(Defect geometry)
Possible Values:
1.12 surface defect of infinite length
1.0 burried defect
0.64 semi-circular surface defect

Material Constant
(But: Measurements may be influenced by sample history)

Damage Parameters
\(c \) – defect size
\(E \) – Young’s modulus
Possible Failure Modes in 4-Point Bending

\[\varepsilon_c^{d-} = \frac{K_{Ic}}{f \cdot \sqrt{\pi c}} \cdot \left(1 + \frac{\gamma_d}{\gamma_c}\right) \cdot (1 + \nu) \]

\[\varepsilon_c^{s+} = \frac{2K_{IIc}}{f \cdot E_{TBC} \sqrt{\pi c}} \]

\[\varepsilon_c^{sh} = \frac{2K_{IIc}}{f \cdot E_{TBC} \sqrt{\pi c}} \]

\[\varepsilon_c^{s} = \frac{K_{Ic}}{f \cdot E_{TBC} \sqrt{\pi c}} \]

\(\varepsilon_c \) is strain in the coating!

M. Schütze, Protective Oxide Scales and their Breakdown, John Wiley, (1997)
Strain gradient across the TBC-thickness under pure bending

~30% difference in strain between TBC/BC interface and outer fiber for 500µm TBC

→ Failure position has to be considered!
Microstructure has an influence on K_c-values

- Crack path mostly through spray flats $K_{lc}(\text{path1})$
 - E.g. tensile segmentation

- Crack path along spray flat boundaries $K_{lc}(\text{path2})$
 - E.g. compressive delamination

$K_{lc}(\text{path1}) > K_{lc}(\text{path2})$
Choosing failure mode and critical strain position

Mode I failure
TBC/BC interface strain

Mode II failure
TBC outer fiber strain

not observed → strong interface

1. Segmentation
Mode I failure
TBC outer fiber strain
2. Delamination

Mode II failure
TBC/BC interface strain

1. Delamination
Mode II failure
TBC outer fiber strain
2. Shear cracking
Modeling input values

\[E_c = \frac{K_c}{f \cdot E_{TBC} \sqrt{\pi c}} \]

YSZ

- Defect Size (µm) vs. Time (h)
- Defect Size (µm) vs. Time (h)
- YSZ Stiffness (GPa) vs. Time (h)

GZO

- Defect Size (µm) vs. Time (h)
- Defect Size (µm) vs. Time (h)
- GZO Stiffness [GPa] vs. Time (h)

- \(K_c \) currently used as fitting parameter!

- \(K_{lc} = 5.3 \text{ MPa m}^{1/2} \)
- \(K_{llc} = 10.6 \text{ MPa m}^{1/2} \)
- \(K_{lc} = 2.3 \text{ MPa m}^{1/2} \)
- \(K_{llc} = 2.8 \text{ MPa m}^{1/2} \)

- \(~49\text{GPa}\)
- \(~25\text{GPa}\)

- no exp. data yet, assumption: same trend as YSZ
Bi-Layer System – GZO Failure

GZO Failure (Bi-Layer TBC)
Isothermal Oxidation 1050°C

Critical Strain (%)
Oxidation Time (h)

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

0 100 200 300 400 500 600

delamination failure
segmentation failure
shear failure
Bi-Layer System – YSZ Failure

YSZ Failure (Bi-Layer TBC) Isothermal Oxidation 1050°C

Critical Strain (%) vs Oxidation Time (h)

- YSZ segmentation failure
- YSZ shear failure

Offset
YSZ Failure (Bi-Layer TBC)
Isothermal Oxidation 1050°C

Identical values for values for E, K_c or $c!$

单层YSZ TBC (500µm)
Bi-Layer System – YSZ Failure

Possible explanation for offset:
Residual stresses in the TBC are relieved by GZO failure prior to measurement of YSZ failure.
...currently under investigation!
Summary

• Mechanical 4-point bending with in-situ acoustic emission measurement is a valuable tool to assess damage processes in bi-layer TBCs

• A modeling approach for bi-layer TBCs has been developed to delineate areas of safe operation from areas where failure is imminent -> mechanical stability diagram
Thank you for your attention!