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= Need for energy storage (ES)
= Approaches to ES

= Thermochemical ES

= Metal oxide TCES
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Electricity demand (California) ) S,

Credit: California Independent System Operator Corporation
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Storage is critical for market penetration of
solar energy into the grid

=  Without storage, solar electricity is generated when least needed

Sandia
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= Shifting solar electricity generation to period of peak demand would have
large implications on grid integration

= Decrease Levelized Cost of Electricity (LCOE) through better sizing/usage of
power block

Electricity Demand

Solar Resource

To Storage

Electrical Demand

O 2 4 6 8 10 12 14 16 18 20 22

Time Credit: C. Libby, EPRI
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Storage: Why thermal? ) i

=  Mechanical
= Flywheels, compressed air, hydrostatic
v" High capacities (large scale)
x Typically suffer from low efficiencies
= Electronic
= Li-ion batteries
v" High efficiencies
x Expensive materials, limited charge/discharge rates
= Supercapacitors
v" Fast charge/discharge rates
x Low energy densities
= Thermal
v" High efficiency

x Temperatures high to support new power cycles (~1200 °C)

«* Materials development crucial to feasibility of thermal storage at such
temperatures
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Key CSP Technology Interfaces and Cost
Targets to Achieve SunShot Goals
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CSP Subsystem Interface Coupling RECEIVER $200/kW,,
A: Solar Field and Receiver HTTFhEx't T.?;fpfg?ng c
. . erma .2 90%

B: Receiver and Heat Transfer Fluid System | |\ ittime > 10,000 cycles
C: Receiver and Energy Storage | Cost = $150/kW, SOLAR FIELD

. i g Optical Error £ 3 mrad
D. Power Block to Recelveé o /\ Wind Speod = 85 mon
E: Power Block to Energy Storage y Lifetime = 30 yrs

Cost = $75/m?

HEAT TRANSFER FLUID

Thermal Stab. 2z 800°C
C,23.0J/gK

Melting Pt. = 250°C
Cost = $1/kg

'POWER BLOCK
Net Cycle Eff. =2 50%

“" THERMAL STORAGE |
Power Cycle Inlet Temp. 2 720°C

Dry Cooled _ :
Cost = $900/kW, Exergetic Eff. 295%
Cost = $15/kWhy,
$1000/kW,
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Concentrating solar power (CSP) has unique
ability to harness thermal storage

= Solar energy used to heat storage media, drive
thermal engine
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= Current molten-salt storage systems are

limited
= Sensible-only storage, low energy storage densities |
= Salt decomposition limits turbine operating | ; - ; Firedirinigg
temperatures (~ 600 °C, max.) '

= Redox particle-based systems offer advantages

= High storage densities via (sensible + reaction)
enthalpy

= Thermochemical energy storage (TCES)
=  Cycle not limited by low decomposition temperatures
= Direct irradiation of thermal storage media

= Re-oxidation reaction directly off compressor outlet,
favorably shifting thermodynamics

%
Cold Air To Comp. i1 - Turbine Air Out

%) Cold Oxidized
'. Particle Storage
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Materials requirements driven by Air-Brayton g e,
operating parameters

= High-efficiency Air-Brayton turbines are designed to
operate at ~1200 °C

= Such temperatures are problematic for existing oxide
TCES materials

= State-of-the-art cobalt oxide redox couple:
2C030, + A ¢ 6C00 + O,y AHypeoretical = 844 kl/kg Co;0,

= High theoretical AH occurring at one discrete transition
= Reduction/oxidation in air occurs near 885 °C

= Kinetics are slow at low temperatures

= Cobalt is expensive
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Cobalt oxide vs. Perovskites (ABO,)

Co,0, CoO * Energetic phase change
cobale() xide ¢ No O? transport
e Oxidation exotherm typically recovered
at lower temperature than reduction

890 °C
Eg:n“- <€ [ AH, i + Co(Tyion = Tow) \
- K 7 (J 600-700 °C rxn p\ ' high low
I 9 9 ®
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Perovskites offer a solution to increasing )
turbine inlet temperatures to > 1200 °C

Laboratories

= Continuous reduction behavior as opposed to discrete reaction
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= Perovskites need to be engineered to increase capacity (mass

loss) and reaction enthalpy 10
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Perovskite compositions )

= ABO;+A <> ABO; 4+ 5/2 OZ(g)
= Gas species dominates entropy term (largest # degrees-of-freedom)

= At equilibrium (onset of reduction) AG,_,4,=0= AH_—TAS, 4

= A change in reduction enthalpy necessitates a change in reduction
temperature

= Previous studies focused on La,Sr; ,Co, M, O 5, with M = Fe,Mn
= High redox capacity (6), but at low temperature (low reaction enthalpy)

= New materials aim to improve cost, reaction enthalpy:

= Cost-effective, lightweight cations desired
= A-site: Ca, B-site: Mn, Ti, Al
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Synthesis and phase characterization ) ==,

= Materials synthesized using an aqueous (Pechini) method

= X-ray diffraction used for phase identification

CAM?28 (CaAl,,Mn, ;03 5)

= Compositions: :
« CTM28  (CaTiy,Mny305)
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Thermogravimetric data acquired over range s

National
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of temperatures and oxygen partial pressures
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Thermogravimetric Analysis = TGA




Equilibrium data taken from TGA experiments (¥ .

‘a
3 ) , <& Large changes in oxygen
I ~§ [ ' stoichiometry by changing
NN temperature.
2.9 \\\ &

— .... or by changing pO,.

Oxygen content (mol O / mol ABO,)

2.7
26 1 PO, =09
- 1382 = 8(1)1 8,0 Observed at pO, = 0.001
2,5 - PEa=4 ~ atm, T=1250°C
| pO, =0.001
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Thermodynamic parameters extracted from this data by van’t Hoff approach
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Equilibrium TGA data used to estimate

thermodynamic parameters
= yvan’t Hoff approach
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Enthalpies from van’t Hoff are given for a =)
specific oxygen non-stoichiometry

Laboratories

= Describe energy to remove a mole of O, at a specific &

450

b) ' Material Reduction Maximum &  Enthalpy at
400 - onset (°C) N (8%
LSCM3791 352 0.461 240 2
350 -
p— CTM28 901 0.293 3900
m
Q 300 CAM28 759 0.322 370°
< 250 a S.M. Babiniec, et al., Solar Energy, 118, 4519, (2015).
g 200 b S.M. Babiniec, et al., Int. J. Energy Res., 40, 280-4, (2016).
3 o
L 150
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100 -
50 > Lag 351,00 sMny 105 5
0 . B T 1
0 0.2 0.4 0.6
L4}

Powered by

%ﬂi SunShot

1.5, Department of Energy



Heat capacity as a function of temperature is
needed to calculate sensible heat

" Einstein heat capacity model used to fit data for CAM28,
converted to polynomial fit for ease of integration

= CTM28 expected to be similar due to same structure and similar molecular
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weight 0.90
__0.85} E
v @ ® o0 0 ® e 00 g 08 - - T TR
o e e®e®
< 0.80 sev?®
X
o
Y 0.75
0.7 ! ! ! !
900 400 600 800 1000 1200

Temperature (Celsius)
cp=as*T>+a,*T*+az*T>+a, *T?>+a, *T + ag

a1l | a | _a | _a | _a |
OVPEE 8.066E-18  -7.169E-14  2.455E-10  -4.070E-7  3.346E-4  7.329E-1

AHgons = [ C,(T)dT = 871 k}/kg between 200 and 1250 °C
AHiotq; = AHgenst AHpogerion = 871+ 370 = 1241 kJ /kg
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. Sandia
Summary & Conclusions )

= CAM28 and CTM28 show high storage enthalpy

= Sensible + reaction enthalpy approx. 1200 kJ/kg

= Reaction enthalpy of CTM28 & CAM28 60% greater than LSCM
" Increase in reduction temperature - larger reaction enthalpy
* Molecular mass of CTM28 and CAM28 ~ 35% lower than LSCM

= Reaction enthalpy extraction up to 1250 °C possible
= Applicable to high-efficiency Air Brayton cycle

= Earth-abundant components brings materials cost down
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