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Outline 

 Need for energy storage (ES) 
 Approaches to ES 
 Thermochemical ES 
 Metal oxide TCES 
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Electricity demand (California) 
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(non-renewable) 



Storage is critical for market penetration of 
solar energy into the grid 
 Without storage, solar electricity is generated when least needed 
 Shifting solar electricity generation to period of peak demand would have 

large implications on grid integration 
 Decrease Levelized Cost of Electricity (LCOE) through better sizing/usage of 

power block 

4 Credit: C. Libby, EPRI 



Storage: Why thermal? 

 Mechanical 
 Flywheels, compressed air, hydrostatic 

 High capacities (large scale) 
× Typically suffer from low efficiencies 

 Electronic 
 Li-ion batteries  

 High efficiencies 
× Expensive materials, limited charge/discharge rates 

 Supercapacitors  
 Fast charge/discharge rates 
× Low energy densities 

 Thermal 
 High efficiency 
× Temperatures high to support new power cycles (~1200 °C) 

 Materials development crucial to feasibility of thermal storage at such 
temperatures 
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Key CSP Technology Interfaces and Cost 
Targets to Achieve SunShot Goals 
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$200/m2 

$200/kWth 

$30/kWth 

$1000/kWe 



Concentrating solar power (CSP) has unique 
ability to harness thermal storage 
 Solar energy used to heat storage media, drive 

thermal engine 
 Current molten-salt storage systems are 

limited 
 Sensible-only storage, low energy storage densities  
 Salt decomposition limits turbine operating 

temperatures (~ 600 °C, max.) 

 Redox particle-based systems offer advantages 
 High storage densities via (sensible + reaction) 

enthalpy 
 Thermochemical energy storage (TCES) 

 Cycle not limited by low decomposition temperatures 
 Direct irradiation of thermal storage media 
 Re-oxidation reaction directly off compressor outlet, 

favorably shifting thermodynamics 
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Materials requirements driven by Air-Brayton 
operating parameters 
 High-efficiency Air-Brayton turbines are designed to 

operate at ~1200 °C 
 Such temperatures are problematic for existing oxide 

TCES materials 
 

 State-of-the-art cobalt oxide redox couple: 
2Co3O4 + Δ ↔ 6CoO + O2(g)   ΔHtheoretical = 844 kJ/kg Co3O4  
 High theoretical ΔH occurring at one discrete transition 
 Reduction/oxidation in air occurs near 885 °C 
 Kinetics are slow at low temperatures 
 Cobalt is expensive 
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Cobalt oxide vs. Perovskites (ABO3) 
• Energetic phase change 
• No O2- transport 
• Oxidation exotherm typically recovered 

at lower temperature than reduction  

Co3O4 

Co2+ Td Co3+ Oh O2- Td Co2+ Oh 

CoO 

O2- Oh 

890 °C 

600-700 °C 

• No phase change occurs 
• Vacancies facilitate O2- transport 
• Redox activity continuous over 

variety of T and pO2 

O-vacancy 
Oxygen 
“A” cation 
“B” cation 

− δ 

+ δ 

O2- ion can “hop” 
across vacancies 

ABO3 
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Perovskites offer a solution to increasing 
turbine inlet temperatures to ≥ 1200 °C 
 Continuous reduction behavior as opposed to discrete reaction 

 
 
 
 
 
 
 
 
 

 Perovskites need to be engineered to increase capacity (mass 
loss) and reaction enthalpy 
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Co3O4 
 

3CoO + ½ O2 

ABO3 
 

ABO3-δ + δ/2 O2 



Perovskite compositions 

 ABO3 + Δ ↔ ABO3-δ + δ/2 O2(g)  
 Gas species dominates entropy term (largest # degrees-of-freedom) 

 At equilibrium (onset of reduction) ΔGred = 0 =  ΔHred – T ΔSred 
 A change in reduction enthalpy necessitates a change in reduction 

temperature 

 Previous studies focused on LaxSr1-xCoyM1-yO3-δ, with M = Fe,Mn 
 High redox capacity (δ), but at low temperature (low reaction enthalpy) 

 New materials aim to improve cost, reaction enthalpy:  
 Cost-effective, lightweight cations desired 
 A-site: Ca, B-site: Mn, Ti, Al 
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Synthesis and phase characterization 

 Materials synthesized using an aqueous (Pechini) method 
 X-ray diffraction used for phase identification 
 Compositions: 
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orthorhombic structure 

• CAM28 (CaAl0.2Mn0.8O3-δ) 
• CTM28 (CaTi0.2Mn0.8O3-δ) 



Thermogravimetric data acquired over range 
of temperatures and oxygen partial pressures 

Thermogravimetric Analysis = TGA 

Oxygen pressure 
/ atm 
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Equilibrium data taken from TGA experiments 
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…. or by changing pO2.  

δmax, observed at pO2 = 0.001 
atm, T = 1250 °C  

Large changes in oxygen 
stoichiometry by changing 
temperature.  

Thermodynamic parameters extracted from this data by van’t Hoff approach 



Equilibrium TGA data used to estimate 
thermodynamic parameters 
 van’t Hoff approach 

𝐾𝐾 =  𝐴𝐴𝐴𝐴𝐴𝐴3−𝛿𝛿
1
𝛿𝛿 �  𝑝𝑝𝑝𝑝2

1 2�

𝐴𝐴𝐴𝐴𝐴𝐴3
1
𝛿𝛿 �

, assume ratio of solid activities is ≈unity 

 ln 𝑝𝑝𝑂𝑂2 = 2 −∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅

= 2 1
𝑇𝑇
∙ −Δ𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅
+ Δ𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅
 

 Enthalpy determined by slope, entropy by intercept for each value of δ 
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Enthalpies from van’t Hoff are given for a 
specific oxygen non-stoichiometry 
 Describe energy to remove a mole of O2 at a specific δ 
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ΔHreaction @ δmax 

Material Reduction 
onset (°C) 

Maximum δ Enthalpy at 
δmax (kJ/kg) 

LSCM3791 352 0.461 240 a 

CTM28 901 0.293 390 b 

CAM28 759 0.322 370 b 

a S.M. Babiniec, et al., Solar Energy, 118, 451–9, (2015).  
b S.M. Babiniec, et al., Int. J. Energy Res., 40, 280–4, (2016). 



Heat capacity as a function of temperature is 
needed to calculate sensible heat 
 Einstein heat capacity model used to fit data for CAM28, 

converted to polynomial fit for ease of integration 
 CTM28 expected to be similar due to same structure and similar molecular 

weight 
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  a5 a4 a3 a2 a1 a0 
CAM28 8.066E-18 -7.169E-14 2.455E-10 -4.070E-7 3.346E-4 7.329E-1 

𝑐𝑐𝑝𝑝 = 𝑎𝑎5 ∗ 𝑇𝑇5 + 𝑎𝑎4 ∗ 𝑇𝑇4 + 𝑎𝑎3 ∗ 𝑇𝑇3 + 𝑎𝑎2 ∗ 𝑇𝑇2 + 𝑎𝑎1 ∗ 𝑇𝑇 + 𝑎𝑎0 

∆𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∫ 𝐶𝐶𝑝𝑝 𝑇𝑇 𝑑𝑑𝑑𝑑𝑇𝑇𝑇
𝑇𝑇1  = 871 kJ/kg between 200 and 1250 °C 

∆𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∆𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+ ∆𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 871 + 370 = 1241 𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘 



Summary & Conclusions 

 CAM28 and CTM28 show high storage enthalpy 
 Sensible + reaction enthalpy approx. 1200 kJ/kg 
 Reaction enthalpy of CTM28 & CAM28 60% greater than LSCM 

 Increase in reduction temperature → larger reaction enthalpy 
 Molecular mass of CTM28 and CAM28 ~ 35% lower than LSCM 

 Reaction enthalpy extraction up to 1250 °C possible 
 Applicable to high-efficiency Air Brayton cycle 

 Earth-abundant components brings materials cost down 
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