Bacterium-like particles as delivery vehicles for multimeric antigens

Kees Leenhouts
Mucosis BV.

Follow this and additional works at: http://dc.engconfintl.org/vaccine_iv
Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Vaccine Technology IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
BACTERIUM-LIKE PARTICLES AS DELIVERY VEHICLES FOR MULTIMERIC ANTIGENS

Kees Leenhouts
CSO Mucosis B.V.
Vaccine Technology IV
Albufeira, Portugal
24 May 2012
Snapshot

<table>
<thead>
<tr>
<th>Products</th>
<th>Innovative mucosal vaccines for respiratory tract infections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Mimopath® vaccine platform</td>
</tr>
<tr>
<td>Based in</td>
<td>Groningen (NL) & Rockville (USA)</td>
</tr>
<tr>
<td>Employees</td>
<td>20 FTE</td>
</tr>
<tr>
<td>Privately Held</td>
<td>MedSciences, BioGeneration, NV-NOM</td>
</tr>
<tr>
<td>Funding</td>
<td>~$16M from equity, credits & grants</td>
</tr>
<tr>
<td>Partners</td>
<td>14 partners in US, Asia and EU</td>
</tr>
</tbody>
</table>

Mucosis

Vaccines that mimic nature
Mucosis is leveraging its Mimopath® platform to revolutionize vaccination by developing novel mucosal vaccines that provide optimal protection in the mucosa, the site where >90% of pathogens enter the human body.
Mucosis’ innovative vaccine platform technology

Current limitations in vaccine development
- Poor delivery methods
- Complex adjuvant technologies
- Systemic immune response primarily

Mimopath® vaccine technology
- Delivery through natural route (mucosa)
- Straightforward, with well-understood mode of action
- Natural, balanced immune response: systemic and in the mucosa
Mimopath®: a versatile vaccine technology platform

Innovative & differentiated vaccines:
- Robust systemic and mucosal responses
- Multiple routes of administration
- Suited for complex antigens

- Mixed
 - Ag + BLP
 - e.g. FluGEM®

- Bound
 - Ag-Protan + BLP
 - e.g. PneuGEM® SynGEM®
Mimopath®: a versatile vaccine technology platform

Nearly any antigen

Any peptide or protein (> 50 done in house)
- Viral, bacterial, parasitic
 - No size limitation
 - Including complex glycosylated multimeric proteins
 - Potentially also tumor and allergy antigens
- Multiple production platforms
 - Bacterial (e.g. E. coli)
 - Mammalian (e.g. CHO)
 - Insect (e.g. S2)
 - Yeast (e.g. Pichia)
Binding of Ag-Protan is easy 1 step process

A
- wild-type *Lactococcus lactis*
- acid treatment & washes with buffer to remove acid and breakdown products

B
- introduce Ag-Protan in expression system
 - e.g. bacteria
 - eukaryotic cells
 - overexpression
 - removal of producer cells

C
- Ag-Protan fusion
 - mixing results in instant & strong non-covalent binding
 - washes with buffer

BLP-Ag vaccine
Robust BLP manufacturing process

cGMP Manufacturing process:
- Fermentation of *L. lactis* according to standard procedures
- Concentrate and wash with WFI
- Acid treatment at elevated Temp
- Concentrate and wash with PBS
- Final formulation in PBS

BLP bulk material stability:
- GLP bulk material stability study since Feb 2009
- cGMP bulk material stability study since Nov 2009
- Storage conditions: T=5°C and T=25°C
- Material is stable at both storage Temps

Large scale cGMP manufacturing feasible
Mimopath® is safe and well tolerated in man

BLPs derived from *Lactococcus lactis*,
a safe bacterium used for food production

- toxin-free (*no LPS*)
- no recombinant DNA
- non-living (*no dissemination*)
- qualified by FDA as G.R.A.S.

Mucosal administration:
- no local side effects
- no systemic side effects
- excellent safety & tolerability confirmed in man
How does it work?
Addressing innate immunity is key

Stimulation & Uptake

Resting innate immune cells

BLP TLR

Activation Migration

Activated innate immune cells

Priming adaptive immune response

CD4+ T cells help B-cells
CD8+ T-cells

Slide 11
BLPs are a TLR2 agonist

in vitro

BLPs activate hDCs which stimulate T-cells in vitro

Adult human DCs

<table>
<thead>
<tr>
<th></th>
<th>Untreated</th>
<th>BLPs</th>
<th>TNFα</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD86</td>
<td>30.59%</td>
<td>98.78%</td>
<td>72.46%</td>
</tr>
<tr>
<td>CD80</td>
<td>70.20%</td>
<td>99.34%</td>
<td>90.30%</td>
</tr>
<tr>
<td>CD83</td>
<td>4.37%</td>
<td>94.17%</td>
<td>75.64%</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>58.97%</td>
<td>99.44%</td>
<td>93.66%</td>
</tr>
</tbody>
</table>

BLPs act through TLR2

T- and B-cells

IFN-γ T-cell Elispot

Spleen

Mouse (TLR2) k.o. WT

DL

k.o. WT

B-cell Elispot

Spleen

HA+BLP

DL

HA+BLP

Broere et al. (2011) unpublished
BLPs act through TLR2

serum IgG and isotype ratio

Intramuscular administration

IgG2c/IgG1 ratio
(Th1/Th2 ratio)

Broere et al. (2011) unpublished

Mucosis
Vaccines that mimic nature
BLPs act through TLR2

secreted IgA

Secreted IgA (nose)

Secreted IgA (vagina)

Broere et al. (2011) unpublished
Mimopath® suitable for repeated vaccination

αB-IgG response of BLP-B vaccine after prior intranasal immunization with PBS or BLP-A vaccine

Audouy et al. (2006) Vaccine 24:5434-5441
Mimopath®
Proof of Concept
Rationale for influenza (FluGEM® program) as proof-of-concept model for Mimopath®

- Well-established correlates of protection
 - Early assessment of potency of the platform technology in human trials (e.g. Hemagglutination titer > 40)

- Challenge models in animals readily available
 - Allows for assessment of potency and efficacy of the vaccines

- Wide range of reagents available
 - Characterisation of systemic responses
 - Assessment of mucosal responses
Mimopath® provides improved and lasting systemic immune response

- **2log HI titers in the serum**
- **FluGEM®**
- **HA i.m. (Benchmark)**
- **HA**
- **FluGEM®**
Immune response is well balanced Th1/ Th2

Cytokine release profile in spleen cells

Serum IgG subtypes

Mimopath® elicits robust local and distant mucosal immunity
Mimopath® provides superior protection & cross protection

Viral replication
Titers in lung 5 days post PR8 challenge

Disease score
Weight development and survival after PR8 challenge

De Haan et al. (2012) Vaccine: accepted

Heterologous challenge
Mimopath® elicits improved systemic & local α-flu immune responses in healthy volunteers

Healthy adults (n=15) were vaccinated intranasally at d=0 and d=21 3 weeks post each vaccination, HI titers (A/California/7/2009) and nasal IgA were determined.
Mimopath® elicits an improved α-flu CMI responses in healthy volunteers

Days 0 21 28
IN vaccinations

Days
0 21 28
PBMC sampling

A/California/7/2009 (H1N1)

A/Perth/16/2009 (H3N2)

Fold increase compared to baseline (day 0)

Fold increase INFγ producing PBMCs at day 28
<table>
<thead>
<tr>
<th>Mimopath® conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof of concept</td>
</tr>
<tr>
<td>Safety</td>
</tr>
<tr>
<td>Mucosal response</td>
</tr>
<tr>
<td>Systemic response</td>
</tr>
<tr>
<td>Protection</td>
</tr>
</tbody>
</table>
Mimopath®
Display of complex multimeric antigens on BLPs

Proof of Concept
Rational for use of multimeric antigens

- Many important (viral) surface antigens are multimeric membrane glycoproteins
- Native multimeric Ags elicit most effective immune responses*

Wei et al. J. Virol. 82 [2008] 6200-6208
Bosch et al. J. Virol. 84 [2010] 10366-10374
Proof of Concept: Influenza HA

- Trimeric HA protein from subtype A H1N1/Cal/7/2009
- Production on HEK293 cells
HA\text{tri} has high affinity for BLPs

Mix and wash

Medium+HCP

BLP

HA\text{tri}

Medium+HCP

Anti-A/Cal/7/2009 Ab

Fluorescence

Light

A/Cal/7/2009 HA\text{tri} bound to BLPs

BLPs only

Slide 30
HA_{tri} displayed on BLP is functional

Slide 31
HA^{tri} displayed on BLP is stable

HA^{tri} bound to BLP

Biological activity (HAU)
HA^{tri} displayed on BLP is highly immunogenic

A/California/7/09 HA

Serum IgG

HI titer

Nasal Secreted IgA

m = mixed
b = bound
Display of complex multimeric antigens: conclusions

- Replacement of transmembrane domain by heterologous multimerization domain feasible
- Plug & play cassette available
- Multimeric Protan fusions efficiently bind to BLPs
- Displayed proteins are functional, stable & immunogenic
- Applicable to multiple disease targets (Influenza, RSV, HIV, Herpes, SARS etc.)
SynGEM®
Lead product
Medical need
- severe respiratory disease in **children** and **elderly**
- annually 64 million infections
- mortality 160,000 (in elderly as severe as Influenza)
- 18,000 to 75,000 hospitalizations (children, USA)

Vaccine failure
- formaldehyde inactivated, alum adjuvanted vaccine (FI-RSV)
- enhanced disease in children upon natural infection
- cause: no neutralizing Ab
 - response skewed towards Th2
 - formaldehyde inactivation modification of (neutralizing) epitopes
 - lack of affinity maturation (poor TLR stimulation)=low-avidity Ab

No registered vaccine available
Rationale for SynGEM®

- Native (trimeric) F antigens bound to BLPs:
 - Native F antigens elicit most effective immune responses*

- BLPs induce protection at the port of entry for RSV infection:
 - Elicit robust mucosal immunity in respiratory tract
 - Demonstrated in preclinical and clinical Mimopath® POC program

- BLPs induce protection against RSV disease:
 - Elicit potent humoral immune responses
 - Importance of humoral immune responses demonstrated by the success of antibody-based therapy in reducing RSV-associated hospitalizations in high-risk infants

- BLPs prevent enhanced disease:
 - Th1-biased responses demonstrated in preclinical Mimopath® POC program
 - Contrasts with Th2-biased responses associated with enhanced disease observed with formalin-inactivated RSV vaccine

- BLPs provide safety advantages:
 - Safe and well tolerated in man
 - Non-living, non-replicating, and GRAS component

Wei et al. J. Virol. 82 [2008] 6200-6208
Bosch et al. J. Virol. 84 [2010] 10366-10374
SynGEM® characteristics

- BLPs displaying antigen as particle
- Stabilized (trimeric) F antigen
- Synagis-like immune response

Sources: http://www.uct.ac.za/depts/mmi/stannard/syncytia.html
SynGEM® displays stable trimeric F

- Trimeric F(usion) protein from subtype A
- Production on HEK, CHO or insect cells
- Stable display of F on BLPs

Slide 39
SynGEM® induces Synagis-like Ab

mice

Synagis competition ELISA

Incubate with mouse serum

Add Synagis

F-coated wells

Transfer non-bound Synagis

Detect Synagis

OD492

pre post
SynGEM® induces local and better systemic Ab

mice

Slide 41
SynGEM® challenge study design

* cotton rats *

<table>
<thead>
<tr>
<th>Groups:</th>
<th>Vaccination 1</th>
<th>Vaccination 2</th>
<th>Vaccination 3</th>
<th>Challenge</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>Day 0</td>
<td>Day 14</td>
<td>Day 28</td>
<td>Day 42</td>
<td>Day 48</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SynGEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Challenge:
RSV/A/Long at 10^5 pfu

Readout
Viral load in lungs (protection parameter)
Lung histopathology score (enhanced disease outcome parameter)
(FI-RSV; i.m., positive control enhanced disease)
SynGEM® elicits protective responses in cotton rats.
SynGEM® no enhanced disease in cotton rats

* The control group which received IM administration with FI-RSV followed by an RSV challenge showed enhanced disease as expected.

Enhanced disease score

- Interstitial Pneumonia
- Alveolitis

Lung Pathology Score

FI-RSV*
PBS
F
SynGEM

* Slide 44
SynGEM® conclusions

<table>
<thead>
<tr>
<th>Display of RSV F<sub>tri</sub> on BLPs</th>
<th>RSV F<sub>tri</sub> is bound in native conformation & recognized by Synagis®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunogenicity</td>
<td>SynGEM® induces Synagis-like neutralizing antibodies in mice</td>
</tr>
<tr>
<td>Protection</td>
<td>SynGEM® provides protection in the cotton rat challenge model</td>
</tr>
<tr>
<td>Safety</td>
<td>SynGEM® does not induce enhanced disease</td>
</tr>
</tbody>
</table>
Acknowledgements

Center for Vaccine Development, UMB, Baltimore, USA
Dr. Marcela Pasetti

Department of Microbiology and Molecular Genetics, OSU, Stillwater, USA
Dr. Wendy Picking

PATH, Enteric Vaccine Initiative, Washington, USA
Dr. Richard Walker; Dr. Lilian Van De Verg; Dr. Lou Bourgeois

PATH, Pneumococcal Vaccine Project, Seattle, USA
Dr. Mark Alderson; Dr. Jeff Maisonneuve

NIH, USA
R01AI089519

Department of Pediatric Infectious Diseases, RUNMC, Nijmegen, NL
Prof. Dr. Peter Hermans; Dr. Saskia van Selm; Dr. Dimitri Diavatopoulos

Pharmaceutical Technology & Biopharmacy, University of Groningen, NL
Prof. Dr. Erik Frijlink; Dr. Wouter Hinrichs; Dr. Vinay Saluja

Molecular Virology, University Medical Center Groningen, NL
Prof. Dr. Jan Wilschut; Dr. Anke Huckriede; Ing. Tjarko Meijerhof

Department of Immunology, University Utrecht, NL
Prof. Dr. Willem van Eden; Dr. Femke Broere

Department of Virology, University Utrecht, NL
Prof. Dr. Peter Rottier; Dr. Xander de Haan

Mucosis B.V., Groningen, NL
All colleagues