Linear time invariant model of anaerobic digestion of waste activated sludge

Antonios Sendjaja
Nanyang Technological University, Singapore

Follow this and additional works at: http://dc.engconfintl.org/wbtr_i

Part of the Environmental Engineering Commons

Recommended Citation
Linear time invariant model of anaerobic digestion of waste activated sludge

Speaker:
Dr. Antonius Yudi Sendjaja
AEBC – NEWRI, Singapore
NTU-NEWRI
Advanced Environmental Technology Centre
Activated Sludge Plant

- Anaerobic digestion: Waste to energy
- Mathematical model for analysis
- LTI model:
 - Stability analysis
 - Parameter sensitivity
 - Kinetic estimation
 - Controller design

Anaerobic Digestion No. 1

- Particulate matters
 - Carbohydrates
 - Sugars
 - Propionate
 - Acetate
 - Proteins
 - Amino acids
 - Butyrate
 - Valerate
 - Lipids
 - Fatty acids
 - Hydrogen
 - Methane

- Particulate inert
- Soluble inert
Activated sludge

Particulate

Activated sludge

Acidogens

Methanogens

Substrate

VFAs

Methane

<table>
<thead>
<tr>
<th>ADM1</th>
<th>Simpler version</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 soluble + 6 ions + 3 gases</td>
<td>7 major components</td>
</tr>
<tr>
<td>35 ODEs</td>
<td>7 ODEs</td>
</tr>
<tr>
<td>25 kinetic constants</td>
<td>8 kinetic constants</td>
</tr>
</tbody>
</table>
Linear Time Invariant

- **Linear:** Input $\times n \rightarrow$ Output $\times n$
- **Time invariant:** Same model applies, now and then

Mass balance

$$\Delta x = \text{Input} - \text{Output} + \text{Generation} - \text{Consumption}$$

Differential equation

Nonlinearity: Biomass growth, input - output

Linearization via Taylor Series

$$x = \left\{ (sI - A)^{-1}B \right\} x_{in}$$

LTI model

Analysis
Linearization

- Biomass growth rate

\[
\frac{k^A S X^A}{K^A + S} \approx \frac{k^A \bar{S}}{K^A + \bar{S}} X^A + \frac{K^A k^A \bar{X}^A}{(K^A + \bar{S})^2} (S - \bar{S})
\]

\[
\frac{k^M V X^M}{K^M + V} \approx \frac{k^M \bar{V}}{K^M + \bar{V}} X^M + \frac{K^M k^M \bar{X}^M}{(K^M + \bar{V})^2} (V - \bar{V})
\]

- Input and output

\[
D(A^{in} - A) \approx D(A^{in} - \bar{A}) - \bar{D}(A - \bar{A})
\]
Model Validation

- A multivariable 6×6 model of anaerobic digestion of activated sludge
- Verification against original model
Kinetic Constant Estimation

Hydrolysis and biomass decay: 1st order
Kinetic parameter is straightforward

Biomass growth: Monod
Need steady state concentration + least square

Open/closed loop step/impulse test for model identification
System Behavior

- **Recommended control structure**
 - Independent individual controller preferable
 - Substrate through biomass, biomass via substrate

- **Stability**
 - Original process is stable
 - Imbalance in acidogens growth and decay rate causes instability

- **Sensitivity**
 - Biomass is more sensitive to influent condition compared to substrate
 - Methanogens is the most sensitive parameter
Acknowledgement

- Energy Market Authority, Singapore
- Sembcorp industries, Ltd., Singapore
 Dr. Jerry Liu, Dr. Shaun Pan, Mr. Prannoy Chowdhury
- NEWRI Team, NTU, Singapore
 A/Prof. Tan Soon Keat, Mr. Teng Wang, Mr. Harish Venkatakrishnan, Mr. Dongzhe Li
Linear time invariant model of anaerobic digestion of waste activated sludge

Antonius Yudi Sendjaja, Youming Tan, Santosh Pathak, Yan Zhou, Maszenan bin Abdul Majid, Wun Jern Ng

Thank You
Industrial Process Control

HOWEVER
Model based control requires good mathematical model
Controller design

- **Feedback**
 - Influent COD increase □ Adjust OLR □ Effluent ok!

- **Feedforward**
 - Temperature decrease □ Adjust OLR □ Effluent ok!

Mathematical model:

1. Black box
2. White box
3. Grey box