Concept and development of solid state ionic capacitors

Takaaki Tsurumi
Tokyo Institute of Technology

Ryoma Ishikawa
Tokyo Institute of Technology

Takuya Hoshina
Tokyo Institute of Technology

Hiroaki Takeda
Tokyo Institute of Technology

Yukio Sakabe
Tokyo Institute of Technology

Follow this and additional works at: http://dc.engconfintl.org/composites_all

Part of the [Materials Science and Engineering Commons](http://dc.engconfintl.org/composites_all)

Recommended Citation

Takaaki Tsurumi, Ryoma Ishikawa, Takuya Hoshina, Hiroaki Takeda, and Yukio Sakabe, "Concept and development of solid state ionic capacitors" in "Composites at Lake Louise (CALL 2015)", Dr. Jim Smay, Oklahoma State University, USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/composites_all/40

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Composites at Lake Louise (CALL 2015) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Development of a new energy storage device that can replace lithium ion batteries is one of the most important subjects for the future of human. Capacitors have an advantage over batteries with respect to the endurance for charge-discharge recycling. Electric double-layer capacitor (EDLC) has been used for some applications but they are still restricted because of relatively low energy density of EDLC in comparison with lithium ion battery and the leakage of liquid electrolyte from packages. Another issue on capacitors is the limit of capacitance density of multi-layered ceramic capacitors (MLCCs). MLCCs are currently used for many electronic devices. The capacitance density of MLCC has been increased one million times by reducing thickness of dielectric layer down to 1 micron in 40 years. However, very serious problem that restricts the capacitance density of MLCC has come up in these 5 years. The problem is known as the size effect barium titanate where dielectric constant of barium titanate somehow decreases with the size of grains in ceramics.

Those problems can be solved if we can make new solid state capacitors with very high capacitance and energy density. We have been studying new concept of solid state ionic capacitors where long-range ionic motion is used for interfacial polarization. Solid state lithium ion conductors are used for dielectrics. Accumulation of huge amount of charge was observed in charge-discharge cycle of capacitors. A composite of strontium titinate and solid state lithium ion conductor was prepared to confirm a new concept of MLCC material using interfacial polarization.