5-9-2018

More accurate process understanding from process characterization studies using Monte Carlo simulation, regularized regression, and classification models

Cary Opel
Gilead Sciences, USA, cary.opel@gilead.com

Cerintha J. Hui
Gilead Sciences, USA

Patrick Y. Yang
Gilead Sciences, USA

Daniel J. Tien
Gilead Sciences, USA

Gayle E. Derfus
Gilead Sciences, USA

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/ccexvi

Part of the Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Cell Culture Engineering XVI by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Cary Opel, Cerintha J. Hui, Patrick Y. Yang, Daniel J. Tien, Gayle E. Derfus, and Rajesh Krishnan

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/ceexvi/214
More Accurate Process Understanding from Process Characterization Studies Using Monte Carlo Simulation, Regularized Regression, and Classification Models

Cary Opel, Research Scientist II

May 9th, 2018
Key Takeaways

• Cross Validation and Monte Carlo techniques can establish accurate CPPs and control strategies that enable a robust manufacturing process.
• Uncertainty affects model outcomes and should be taken into account when making risk-based predictions.
• The best models are created when researchers evaluate the models, not just rely on rules.
• More accurate model construction can make QbD programs more efficient, enable refinement of DOE studies, and inform future programs.
Regression and Model Selection

• DOE generated data lends itself to linear regression models:

\[y = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \]

• y’s are outcomes (e.g. product quality) and x’s are parameters (e.g. temperature)

• How to pick the “best” variables to fit the data?
 • Minimize error
 • Avoid over-fitting

• Move from “descriptive” analysis to “predictive” analysis
 • Mean Squared Error Fitted (MSE Fitted) to Mean Squared Error Predicted (MSE Predicted)
Standard Stepwise Analysis

• Emphasis on Rules-Based Model Selection

• Backwards Stepwise
 – Start with all main, interaction, and/or quadratic effects included
 – Eliminate one by one based on single p-Value or AIC/BIC criteria
 – When no more parameters meet the elimination criteria, the model is final

• Impact Assessment
 – A final round of variable elimination is performed based on the magnitude of the effect
 – This is often accomplished by some kind of Impact Ratio
 – For example, aggregates can be significantly impacted by Temperature, but if the change in HMW is ~0.5% over the range studied, should it be considered a CPP?
The Problem with Fitting By Error

MSE Fitted is the error of the model when used on the data that was used to generate the model itself.
The Problem with Fitting By Error

MSE Predicted is the error of the model when used on new data.
The Problem with Fitting By Error

MSE Fitted error both overestimates the accuracy of the model and overfits the data by including too many terms.
Monte Carlo / Cross Validation

Algorithm
- Generate two data sets
 - Sample subset of data without replacement (Training Set)
 - Set aside the remaining data (Validation Set)
- Build model with Training Set
- Measure model performance on Validation Set

Dataset

Cross Validation

Resampling

Simulation 1

Simulation 2

Simulation n

\[\hat{y}_{\text{data}} \]

\[\text{MSE}_{\text{data}} \]

\[\hat{y}_1 \]

\[\text{MSE}_2 \]

\[\hat{y}_2 \]

\[\text{MSE}_2 \]

...

\[\hat{y}_n \]

\[\text{MSE}_n \]

\[\hat{y}_{95\% \text{ CI}} \]

\[\text{MSE}_{95\% \text{ CI}} \]
Workflow

• Define Model Size
• Select Process Parameters
• Simulate Product Quality
• Compare Different Models
Define Model Size

1. **Dataset**
2. **Training Dataset**
 - Perform Stepwise Regression
 - Eliminate n # of Model Terms
 - Predict Validation Dataset
 - Calculate Error

Repeat Multiple Times for Each n # of Model Terms
Define Model Size

Confidence intervals show uncertainty of model accuracy

Find the number of terms that minimizes error
Select Variables

The importance of variables with similar rankings cannot be distinguished and should be treated as “all or none”.

Important variables will be ranked consistently high.

The importance of variables with similar rankings cannot be distinguished and should be treated as “all or none”.

- constant: 1
- PostshiftTemp: 2
- pH: 3
- pH x PostshiftTemp: 4
- pH x InocDensity: 5
- DO²: 6
- pH x FeedAmount: 7
- InocDensity: 8
- InitialTemp: 9
- InocDensity²: 10
- DO x InitialTemp: 11
- InocDensity x DO: 12
- FeedAmount: 13
- PostshiftTemp²: 14
- DO: 15
- GlucTrigger x GlucTarget: 16
- AAVolume x GlucTarget: 17
- DO x FeedAmount: 18
- GlucTrigger x AAVolume: 19
- GlucTarget²: 20
- AAVolume²: 21
- TempShiftTrigger²: 22
- FeedAmount x InitialTemp: 23
- pH x TempShiftTrigger: 24
Simulate Product Quality

Randomize Dataset and Build Model
\[y = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \]

Generate Random Run with Conditions Inside Operating Range
1 < \(x_1 \) < 2
3 < \(x_2 \) < 5
...
3 < \(x_n \) < 8

Calculate Predicted PQ and Repeat
\[y_1 = \]
\[y_2 = \]
...
\[y_n = \]

Calculate Summary Statistics
Mean
Median
95% CI
Simulate Product Quality

A set of Operating Ranges produces a simulated product quality outcome, with measureable confidence intervals.
Candidate control strategies can generate simulated quality profiles to allow Operating Ranges to be set.
Compare Different Models

• Goals
 – Accurate predictions
 – Clear parameter selection

• Models
 – Stepwise Regression
 ▪ Backwards
 ▪ Forwards
 – Regularization
 ▪ LASSO
 – Classification Models
 ▪ Decision Trees
Comparing different elimination rules like Forward Stepwise regression can help discriminate borderline significant parameters.
Regularization methods like LASSO can do a good job minimizing error, but fail to clearly designate critical parameters.
Classification and Regression Trees can provide clear parameter selection, but often fail to achieve the accuracy of linear regression techniques.
Example Process Characterization Program

- mAb Process Characterization Program
- D-optimal DOE Designs
 - Upstream
 - 102 runs / 11 factors
 - Protein A
 - 52 runs / 6 factors
 - Anion
 - 83 runs / 6 factors
 - Cation
 - 64 runs / 7 factors
Nine-way tie for third variable caused problems for standard stepwise regression.

Monte Carlo method identifies this issue and leads to a simpler model.
Example: Many Terms Caused by Local Minima

Local minima causes standard method to select larger model.

Monte Carlo method identifies this issue and leads to a simpler, more accurate model.
Example: Confidence in No Model

Monte Carlo method clearly identifies cases where the studied range has no effect on the outcome measured.
Improvements from Standard Stepwise

<table>
<thead>
<tr>
<th></th>
<th>SEC Main</th>
<th>SEC HMWs</th>
<th>IEC Main</th>
<th>IEC Acidic</th>
<th>IEC Basic</th>
<th>Titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Backwards</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>17</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Monte Carlo</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Accuracy Difference</td>
<td>+10%</td>
<td>+5%</td>
<td>-2%</td>
<td>+1%</td>
<td>-5%</td>
<td>+20%</td>
</tr>
</tbody>
</table>
Conclusions

• Monte Carlo Methods, along with other advanced regression tools can improve researchers’ ability to analyze their data.
• Reduction of overfitting in model selection can lead to simpler, more accurate process control, eliminating waste and improving efficiencies.
• Using advanced methods can help implement QbD, refine DOE studies and inform future programs.
• Data analysis should not be left to automated routines. There’s no substitute for thoughtful scrutiny of models with the right tools.
Acknowledgements

• Co-Authors
 – Cerintha J. Hui
 – Patrick Y. Yang
 – Daniel J. Tien
 – Gayle E. Derfus
 – Rajesh Krishnan

• Executive Sponsorship
 – Yas Saotome
 – Reza Oliyai

• Upstream
 – Andy Snowden
 – Yunling Bai
 – Daniel Tong
 – Peter Zhang
 – Jennifer Autsen
 – Anne Thiel
 – Jeremy Wang
 – Garett Kasler
 – Brian Zedalis

• Downstream
 – Nooshafarin Sanaie
 – Andrew Quezada
 – Robert Vonder Reith
 – Deblina De Ghosh
 – James Woo

• Formulation
 – Charissa Towne
 – Juhi Firdos
 – Maria Fischer
 – Mohita Nimiya

• Analytical
 – Aabha Chordia
 – Darren Brown
 – Jen Kyauk
 – Josh Haleen
 – Luie Jaworski
 – Molly Roudabush
 – Noah Kiedrowski
 – Ron Seng
 – Steve Kauffman

Questions?