6-22-2016

Integrating batch pyrolysis and fractional condensation (2D MFR) to get high-value products from biomass

Mohammad Hossain
ICFAR – Western University, fberruti@uwo.ca

Chiara Barbiero
Western University, Canada, cbarbier@uwo.ca

Ian Scott
Agriculture and Agri-Food Canada

Franco Berruti
ICFAR – Western University

Cedric Briens
ICFAR – Western University

Follow this and additional works at: http://dc.engconfintl.org/gpe2016

Part of the Chemical Engineering Commons

Recommended Citation
Mohammad Hossain, Chiara Barbiero, Ian Scott, Franco Berruti, and Cedric Briens, 'Integrating batch pyrolysis and fractional condensation (2D MFR) to get high-value products from biomass' in '5th International Congress on Green Process Engineering (GPE 2016)', Franco Berruti, Western University, Canada Cedric Briens, Western University, Canada Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/gpe2016/39

This Abstract is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in 5th International Congress on Green Process Engineering (GPE 2016) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Integrating Batch Pyrolysis and Fractional Condensation (2D MFR) to get High-value Products from Biomass

Mohammad Hossain, Chiara Barbiero, Ian Scott, Franco Berruti, Cedric Briens
High-Value Products from Biomass

Solvent extraction:
- Expensive
- Time consuming
- Not environmental friendly

Traditional pyrolysis is much cheaper, easier and safer

but:
- Complex liquid mixtures
- Thermally unstable products → distillation is difficult
Objectives

Develop a better process combining:

• Batch pyrolysis
• Fractional condensation

• Apply the technology to:
 • Tobacco leaves
 • Tomato plant waste
 • Spent coffee grounds
 • Lignin
Experimental Setup

Mechanically Fluidized Reactor (MFR):
- Mechanically stirred bed of char particles → can process particles that regular fluidization cannot
- No fluidization gas → easier condensation

Hot condenser for valuable products
Concept

![Graph showing the concept with hot bath condenser temperature (°C) on the y-axis and reactor temperature (°C) on the x-axis. The graph contains a shaded area indicating the temperature range.](image)
Nicotine from Tobacco Leaf

- 260-275 °C
- 245-275 °C
- 230-275 °C (2D-MFR)
- 210-275 °C
- 180-275 °C
- 25-275 °C

% average nicotine concentration vs % cumulative nicotine recovery

1D-MFR
Pesticides from Tobacco leaf and Tomato plant waste

Colorado potato beetle (CPB)

Assay: % of beetles killed by bio-oil
Pesticides from Tobacco leaf and Tomato plant waste

![Bar chart showing % mortality for tobacco and tomato plant waste at different reactor temperatures.](chart.png)
Pesticides from Tobacco leaf and Tomato plant waste

<table>
<thead>
<tr>
<th>Reactor temperature cuts (°C)</th>
<th>LC$_{50}$ (mg/g)</th>
<th>Tobacco</th>
<th>Tomato</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-350</td>
<td>2.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>350-400</td>
<td>2.5</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

LC$_{50}$: concentration of bio-oil for 50% mortality
Anti-oxidants from Tobacco leaf, Tomato plant waste & spent Coffee grounds

Gallic acid is a strong anti-oxidant used as standard
Anti-oxidants from Tomato plant waste

Reactor temperature: 400-565 °C
Conclusions: Biorefinery applications