Novel glycoconjugate vaccines based on rationally designed synthetic carbohydrate antigens

Stewart Campbell
Ancora Pharmaceuticals

Follow this and additional works at: http://dc.engconfintl.org/vaccine_iv

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Vaccine Technology IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Ancora Pharmaceuticals Inc.

World leaders in synthetic carbohydrate chemistry company.

Vaccine Technology IV
Albufeira, Portugal

May 2012 ©2012 Ancora Pharmaceuticals Inc.
Ancora Pharmaceuticals: Overview

• Founded on the groundbreaking carbohydrate synthesis technology from Prof. Dr. Peter Seeberger (Max Planck)

• Demonstrated track record in producing commercially relevant synthetic carbohydrates across the glycobiology spectrum

• Primary R&D focus: glycoconjugate vaccines for prevention of nosocomial and opportunistic infections

• Business focus: build value through partnered and proprietary programs

• World class team of managers and advisors

©2012 Ancora Pharmaceuticals Inc.
Management and Advisors

- **Richard Hoffman**, J.D., M.B.A. CEO; 20+ years in biopharmaceutical corporate and business development (Abgenix, Ablexis)

- **Stewart Campbell**, Ph.D. Vice President - Research & Development; 18 years in biopharmaceutical therapeutic development; 16 years carbohydrate chemistry expertise.

- **Obadiah Plante**, Ph.D. Co-founder, Senior Director - Vaccine Discovery; 15 years carbohydrate chemistry expertise.

- **Professor Peter Seeberger**, Ph.D. Director, Scientific Founder; World leader in carbohydrate chemistry and glycobiology; Elected Director of the Max Planck Institute

- **Barry Buckland**, Ph.D. Director and Scientific Advisor; ex-VP Bioprocess for Merck Vaccines; 30+ years vaccine & biologic product development

- **Florian Schodel**, M.D. Scientific Advisor; ex-VP Clinical Development for Merck Vaccines; 20+ years vaccine research and clinical development

- **George M. Siber**, M.D. Scientific Advisor; ex-CSO for Wyeth Vaccines; 30+ years vaccine research & development

- **Bruce Forrest**, M.D., M.B.A. Corporate and Scientific Advisor; ex-SVP Vaccine Research & Development for Wyeth Vaccines (Pfizer); 20+ years vaccine research and clinical development

- **Rahul Singhvi**, Sc.D., MBA. Director; former President/CEO of Novavax; former scientist at Merck Vaccines.

©2012 Ancora Pharmaceuticals Inc.
Glycoconjugate Vaccines – Proven Products, Persistent Barriers

• Commercially Validated Approach:
 • Pneumococcus
 – Prevnar®
 – Synflorix®
 • Meningococcus
 – Menactra®
 – Menveo®
 • Hib:
 – Comvax®
 – HibTITER®
 – Hiberix®

 – Why only 3 pathogens addressed so far?

• Major Barrier:
 – Limited access to defined carbohydrate material
Carbohydrate Production: State-of-the-Art BioProcessing Can Be Limiting

Biological material source

Isolated material

Purified average structures

Bacterial surface

Target antigen

Impurity

Bioprocesses yield average structures (mixtures) which can impede every stage:

- Discovery (POC)
- Development (CTM)
- Commercial (Mfg)
Chemical Synthesis Platform Unlocks Carbohydrate Space

Ancora synthesis technology platform produces defined structures

Building block technology Assembly capabilities Processing methodologies

No limitation to structure or material access – Ancora has completed every target structure to date

Opens entire glycobiology application space

©2012 Ancora Pharmaceuticals Inc.
Demonstrated Production of Diverse, Complex Mammalian Carbohydrate Structures

N-/O-linked structures (biotherapeutics)

Highly branched structures (biotherapeutics)

Complex adhesion structures (inflammation)

Heparan sulfates (coagulation, targeting)

©2012 Ancora Pharmaceuticals Inc.
Demonstrated Production of Diverse, Complex Pathogen Carbohydrate Structures

Bacterial

Meningitis B

Parasitic

Burkholderia

Group A Strep

Leishmania

Lipid A

Malaria toxin

Fungal

C. albicans β-glucan

©2012 Ancora Pharmaceuticals Inc.
Ancora Platform Provides Access to Virtually Any Complex Carbohydrate Structure

Example: Leishmania LOS

Design and optimize for desired biological profile
Attributes of Synthetic Carbohydrate Antigen Approach

Vaccine discovery

- Unattainable structures
- New targets
- "Core" structures
- Antigen "Med Chem"
- Optimization
- Epitope mapping
- Conjugation control
- Presentation
- Loading

Vaccine development

- Large scale, well-defined antigens
- Regulatory
- Manufacturing
- Safety

© 2012 Ancora Pharmaceuticals Inc.
Synthetic Antigens Provide Excellent Conjugation Control

Candida β-glucan conjugates

- Purified
 - Lam-CRM197
 - Curd-CRM197
 - 17mer-CRM197
 - 15mer-CRM197
 - CRM197

Group A Strep PS conjugates

- Synthetic

Bromuro et al. Vaccine 28 (2010) 2615 (Novartis Vaccines)

Kabanova et al. Vaccine 29 (2010) 104 (Novartis Vaccines)
Ancora Platform Capabilities: Scalable to Support Discovery Through Early Clinical Trials

Building blocks

Assembled structures

Multi-kg scale

100 g - kg scale

Final, active material

100 g scale (clinical program scale)

Cost Competitive

©2011 Ancora Pharmaceuticals Inc.
Ancora Vaccine Portfolio: Focus on Nosocomial Infections

<table>
<thead>
<tr>
<th>Program</th>
<th>Chemistry</th>
<th>Biological Function</th>
<th>Preclinical Development</th>
<th>Clinical Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ag Design</td>
<td>Ag Synthesis</td>
<td>Immunogenic</td>
<td>In vitro</td>
</tr>
<tr>
<td>NOSOCOMIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMUNITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moraxella</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIODEFENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkholderia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2012 Ancora Pharmaceuticals Inc.
Staphylococcus Vaccine Program: Antigen Optimization via “Med Chem”
Staphylococcus Vaccine Opportunity

- **Target Populations and Medical Need:**
 - **Incidence:**
 - > 1.7 MM nosocomial infections annually
 - CoNS and *S. aureus* in top five
 - **At-risk populations:**
 - Elective Cardiovascular Surgery – 7 MM procedures
 - Orthopedic Surgery – > 1 MM procedures
 - End-Stage Renal Disease – 600,000 patients
 - High drug resistance (MRSA), high mortality rate (20% of HAI)
 - High economic burden: >$30,000/ICU patient

- **Staphylococcus as a Target:**
 - Gram positive, biofilm producing bacterium
 - Usually encapsulated (Types 5, 8, 336 account for most human infections)
 - Complex infection life-cycle → multi-valent approach likely required

©2011 Ancora Pharmaceuticals Inc.
Staphylococcal PIA/PNAG: Major Biofilm Component and Virulence Factor

- dPNAG provide physical interface between bacterium and biofilm
- Human anti-dPNAG antibody levels correlated with *in vitro* OPA activity

©2012 Ancora Pharmaceuticals Inc.
Precedent for PNAG as a Target Antigen: Purified PS & Purified DT-Conjugate

Purified PNAG Mixtures (Pier et al.)

DT-Conjugates of purified PNAG Mixtures (Pier et al.)

Partial deacetylation, Conjugation

Antigen size, functional group pattern, conjugation UNCONTROLLED

Immunogenic; active in vitro and in vivo

Deacetylation required for immunoprotection → optimum pattern UNCLEAR

Pier group *Science* 284 (1999) 1523
Pier group *Infect Immun* 73 (2005) 6752

©2012 Ancora Pharmaceuticals Inc.
dPNAG Antigen Chemical Space: Defining the Problem

Vast chemical space defined $\rightarrow > 10^{30}$ permutations in DP x Degree alone

Requires directed empirical and rational approach

©2012 Ancora Pharmaceuticals Inc.
Precedent for PNAG as a Target Antigen: Synthetic TT-Conjugates

Synthetic PNAG/dPNAG fragments covering two extremes: fully N-acetylated, fully N-deacetylated

Showed synthetic dPNAG conjugate provides passive immunoprotection

Acetylation patterns, pattern repeats not addressed

Protection after active immunization not demonstrated

Pier, Nifantiev groups *Infect Immun* 78 (2010) 764

©2012 Ancora Pharmaceuticals Inc.
dPNAG Chemical Space: State-of-the Art versus Ancora

Ancora platform:
- Grants access to the ENTIRE dPNAG chemical space
- Enables systematic and rational optimization of antigen structure
Ancora *Staphylococcus* Vaccine Program: Synthetic Antigens with Defined Patterns

Defined Synthetic Antigen Library

- **Defined Pattern 1**
 - Ag 1
 - Ag 2
 - Ag 3

- **Defined Pattern 2**
 - Ag 4
 - Ag 5
 - Ag 6

- **Defined Pattern 3**
 - Ag 7
 - Ag 8
 - Ag 9

Specific Conjugation Site

- R = Patterned H, Ac

```
O
HO- O
HO- O
NHR  HO- O
O
LINKER
```

- **Carrier**

“Medicinal Chemistry” approach to identifying best Ag

Rational antigen library design \rightarrow head-to-head testing

Antigen size, functional group pattern, conjugation are EXACT
Staphylococcus Vaccine Program:
Functional Proof-of-Concept

In vitro opsonophagocytosis assay (OPA):
Complement-mediated killing by human PMN’s

In vitro: Antisera selectively bind bacteria (WBE)

©2011 Ancora Pharmaceuticals Inc.
In Vivo Proof-of-Concept: Murine Lethal Challenge Model

- S. aureus Newman inoculum: 5.6×10^8 (LD$_{50}$)
- CD1 outbred mice (n = 10 per group)
- Schedule: 3 x 10 ug @ 11-day intervals, rest 14d, i.v. challenge

• Trend: dPNAG-KLH conjugates showed better protection vs. controls
• PNAG-KLH no better than controls

©2011 Ancora Pharmaceuticals Inc.
Staphylococcus Vaccine Program: Competing Antibodies Phenomenon

Lee, Pier and coworkers characterized neutralizing effect of combined anti-CP and anti-dPNAG Abs both in vitro (OPA) and in vivo (bacteremia, skin abscess models)

- Identified the same phenomenon in sera from bacteremia patients
- Traced mechanism to direct binding of respective variable regions to each other

©2011 Ancora Pharmaceuticals Inc.
New dPNAG Antigen Design Criteria

- ≤ 50% N-acetylation degree
- de-N-acetylated residues spaced by two intervening residues were disallowed
- ≤ 2 de-N-acetylated residues allowed in positions complementary to the CP ManAcA residues in an entire sequence (length dependent)
- ≤ 3 consecutive N-acetylated residues allowed
- Minimize overall length

Desired output: Improved antigen devoid of anti-CP interference properties
Moraxella Vaccine Program: Targeting Novel “Core Structures”
Moraxella catarrhalis Vaccine Program

Significant unmet medical need
- COPD: Over 2 million infections annually (2nd)
- *Otitis media*: Over 30% of acute *otitis media* cases (3rd)
- A leading cause of LRTIs in vulnerable populations
- Widespread drug resistance

Target Antigen Overview:
- Gram negative lipo-oligosaccharide (LOS) class
- Critical for survival and virulence
- A, B, and C serotypes: 95% of human infections
- Validated target *in vitro* and *in vivo*

Goal: Identify antigen structures and substructures cross-protective across all major MXLA strains

©2012 Ancora Pharmaceuticals Inc.
Moraxella Vaccine Program: Antigen Design

Chemistry provides unique systematic approach to core structures

Core

α-chain

β-chain

Serotype A

Serotype B

Serotype C

Lipid A

Antigen library synthesized and conjugated

©2012 Ancora Pharmaceuticals Inc.
Moraxella Vaccine Program:

Cross Reactivity ELISA of Rabbit Antisera

Background

Threshold

OD (net)

Pre-immune 1:25000 1:125000 1:625000

Analogs 4 and 5 show significant, broad cross-reactivity
Moraxella Vaccine Program: Serum Bactericidal Assay (SBA) Data

SBA titers ≤ 1:250 for parent and cross-reactive Ag’s (n = 4 mean shown)

ELISA cross-reactivity translates into SBA activity
Pseudomonas Vaccine Program: Targeting Biofilm & “Hybrid Core” Structures
Pseudomonas Vaccine Program

P. aeruginosa

Significant Market Opportunity:
- 2nd leading cause of ventilator associated pneumonia
- 3rd leading cause of hospital-acquired pneumonia
- CF Patients: Most common lung infection, leading cause of morbidity and mortality
- Antibiotic resistance reaching critical level

Target Antigen Overview:
- 3 potential targets based on conserved nature, virulence role and colonization
- Alginate biofilm (1) expressed in chronic mucoid infections
- O-antigens (2) expressed in acute non-mucoid infections
- LOS core (3) expressed in all infection stages

Pseucomonas Vaccine Program:
Automated Synthesis of Alginate Antigen

Design and Chemistry Approach
- Series of β-mannuronic acids of varying length
- Assembled in a day from a one building block (1) using Ancora’s automated synthesizer
- Functional group for subsequent conjugation
- Evaluation in progress

- Collaboration with Leiden University

Ancora's automated carbohydrate synthesizer

Ancora Summary

• Diverse, broadly applicable carbohydrate synthesis platform

• Demonstrated track record of generating relevant synthetic carbohydrate antigens (defined, homogeneous)

• Internal focus on glycoconjugate vaccines for the prevention of nosocomial and other infections

• Excellent team of experienced managers and advisors

• Business strategy: partner after demonstration of preclinical POC
Acknowledgements

Ancora Team
Obadiah Plante, Ph.D.
William Christ, Ph.D.
Wenju Li, Ph.D.
Harry Lee, Ph.D.
Yuhong Guo
Kezhan Cheng
Greg Lohman, Ph.D.
Matthew Jones
Richard Hoffman (CEO)

Ancora Advisors
Prof. Dr. Peter Seeberger, MPI
Dr. Florian Schödel
Dr. George Siber
Dr. Barry Buckland
Dr. Bruce Forrest
Prof. Louis Schofield, WEHI
Prof. Pedro Alonso, CRESIB
Prof. Marcel Tanner, STI

Leiden University
Jeroen Codée, Ph.D.
Marthe T.C. Walvoort, Ph.D.
Hans van den Elst
Herman Overkleft, Ph.D.
Gijsbert A. van der Marel, Ph.D.

Financial Support
Ancora Investors
NIH
NIST-ATP

©2012 Ancora Pharmaceuticals Inc.
Ancora Pharmaceuticals Inc.

World leaders in synthetic carbohydrate chemistry company.

Vaccine Technology IV
Albufeira, Portugal