ElectroOsmoDialysis

Andriy Yaroshchuk
ICREA & Polytechnic University of Catalonia – BarcelonaTech, Spain, andriyyaroshchuk@upc.edu

Mykola Bondarenko
Institute of Bio-Colloid Chemistry, National Academy of Sciences of Ukraine

Emiliy Zholkovskiy
Institute of Bio-Colloid Chemistry, National Academy of Sciences of Ukraine

Trond Heldal
Osmotex AG, Switzerland

Follow this and additional works at: http://dc.engconfintl.org/separations_technology_ix

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Separations Technology IX: New Frontiers in Media, Techniques, and Technologies by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
ELECTRO-OSMO-DIALYSIS

Andriy Yaroshchuk¹, Mykola Bondarenko², Emiliy Zholkovskiy², Trond Heldal³
ICREA & Dept of Chemical Engineering, Polytechnic University of Catalonia, Barcelona, Spain
²Institute of Bio-Colloid Chemistry, National Academy of Sciences, Kyiv, Ukraine
³Osmotex AG, Thalwil, Switzerland

Outline

- Electrodialysis (ED)
- Electroosmosis (EO)
- Concentration polarization (CP) and limiting current in ED
- Convection as an effective tool for reducing CP in ED
- How to arrange for a “through” convection across ion-exchange membranes (IEXMs): micro-perforation of IEXMs and their “conjugation” with nanoporous membranes.
- Numerical simulation of Electro-Osmo-Dialysis
- Important differences from ED: no limiting current, noticeable volume transfer (potentially, better recovery), asymmetry (possibility of using capacitive electrodes without stream commutation)
- Examples of preparation of micro-perforated IEXMs
- Conclusions and Outlook
Electrodialysis

icrea
Institució Catalana de Recerca i Estudis Avançats

![Electrodialysis Diagram](image-url)
Electrodialysis: limiting current

\[I_{\text{lim}} \approx \frac{F D_s c_0}{\delta \cdot (t_m - t_s)} \]
Electro-convection as a mechanism of over-limiting currents

Convection is a very effective salt-transport process yet tangential convection is often inefficient due to the no-slip condition at solid surfaces.
Electroosmosis is a preferred liquid-delivery tool in microfluidics because it is much more efficient at micro-scale than pressure-driven flows.

\[J_v = \frac{\varepsilon \varepsilon_0 \zeta}{\eta} \cdot E \]

Smoluchowski formula; rate of EO is independent of the pore size (if the pores are not too small).

In very small (sub-nanometer) pores (ion-exchange membranes) EO is very weak.
Schematics of Electro-Osmo-Dialysis

- Cation exchange membrane
- Positively charged
- Flow
- Negatively charged
- Anion exchange membrane
- Current
Distribution of effective pressure within nanoporous medium

Flow rate is proportional to the gradient of effective pressure

hole radius 1 µm

$P(r,z)$
Distribution of concentration and flow streamlines within nano-porous layer

\[\zeta = 50 \text{ mV} \]
Establishment of 1D distributions across nanoporous layer

\[\Delta \varphi = 300 \text{ mV} \]
Establishment of 1D distributions across nanoporous layer

\[
\frac{\text{interhole distance}}{\text{layer thickness}} = 1
\]
Desalting vs applied voltage

\[\zeta = 25 \text{ mV} \]
Current-voltage characteristics

\[c_0 = 1 \text{ mM} \]
Specific energy consumption in desalination of brackish water

![Graph showing specific energy consumption as a function of voltage for different interhole distances and layer thicknesses. The graph includes data points for 0.1, 0.4, and 2 interhole distances and layer thicknesses, with a trend line indicating an increase in specific energy consumption with voltage.

2000 ppm NaCl]
Perforation scenarios: laser drilling
Perforation scenarios: template molding

3D image of the silicon mold

European Membrane Institute Twente
Perforation scenarios: template molding
Conclusions and Outlook

- Numerical analysis shows that the processes of Electrodialysis and Electroosmosis can be beneficially combined via conjugation of ion-exchange and nanoporous membranes.
- To allow for volume flow across dense ion-exchange membranes, they should have scarce microscopic openings (holes, perforations).
- Despite such extreme inhomogeneity the flow and concentration fields become 1D at short distance from the interface between the perforated IEXM and nanoporous layer.
- Due to some convective passage of salt through the openings there is no limiting current; nonetheless, the outflow concentration can be considerably reduced (desalination effect).
- In contrast to the conventional electrodialysis, in EOD the salt transfer is accompanied by the volume transfer in the opposite (beneficial) direction; therefore, one can increase the use of pre-treated water (better product recovery).
- The process of EOD is essentially asymmetric (flow rate and desalination effect depend on the current direction); this can afford operation with capacitive electrodes without commutation of diluate and concentrate streams.
- There are positive preliminary results concerning IEXM perforation (laser drilling and template molding); cheaper alternatives are explored.
- Experiments with composite materials are planned for near future.
- Partners are sought for the development of this new technological process.
THANK YOU FOR YOUR ATTENTION!