Evaluating deformation behavior of a TBC-System during thermal gradient mechanical fatigue by means of high energy X-ray diffraction

M. Bartsch
German Aerospace Center, Cologne

J. Wischek
German Aerospace Center, Cologne

C. Meid
German Aerospace Center, Cologne

K. Knipe
Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida

A. Manero
Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/thermal_barrier_iv

Part of the Materials Science and Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Thermal Barrier Coatings IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Evaluating deformation behavior of a TBC-system during thermal gradient mechanical fatigue by means of high energy X-ray diffraction

M. Bartsch, J. Wischek, C. Meid
German Aerospace Center, Cologne

K. Knipe, A. Manero, S. Raghavan
Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida

A. M. Karlsson
Fenn College of Engineering, Cleveland State University, Ohio

J. Okasinski, J. Almer
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois
Outline

1. Realistic thermomechanical testing with thermal gradients

2. Interpreting experimental results by means of numerical models

3. Model validation by means of in situ strain measurements via high energy X-ray diffraction at Argonne APS*

*APS=Advanced Photon Source
Stress distribution due to thermal gradient

- Hot outer wall
- Cooled inner wall
- Biaxial compressive stress
- Biaxial tensile stress
- Cooling air
Investigated coating system

- **Columnar TBC**
 - $\text{ZrO}_2 + (6-8) \text{wt.-\\% Y}_2\text{O}_3$
 - $\alpha = 10 \cdot 10^{-6} \text{K}^{-1}$

- **TGO**
 - Al_2O_3
 - $\alpha = 8 \cdot 10^{-6} \text{K}^{-1}$

- **Bond Coat**
 - MCrAlY, PtAl
 - $\alpha = 14 - 16 \cdot 10^{-6} \text{K}^{-1}$

- **Substrate**
 - Nickel-base superalloy

- Near surface:
 - 1 - 10 μm
 - ~30 - 100 μm

- Near TGO:
 - 120 - 200 μm

- Image of columnar structure with scale bars for 20 μm.
Test facility for thermal gradient mechanical fatigue

16 Quartz lamps, 1 kW each

Internally cooled tensile test specimen

Thermal Gradient Mechanical Fatigue = TGMF
View of open furnace
Summarizing thermal and mechanical loads

- Maximal material temperatures ca. 1000°-1100°C
- Thermal gradient (temperature drop over a ceramic TBC of 100-200µm thickness of about 80°-150°C)
 - High thermal heat flux
 - Multiaxial thermally induced stresses
- High thermal transients (heating and cooling rates)
- Superposed mechanical loads (centrifugal forces on rotating blades)
Thermal mechanical load cycle – representing the fatigue load of flight cycle

- It is not practical to perform test cycles with realistic cycle duration (e.g. 2 - 10 hour flights) - thus: reduced dwell times
- But: time at high temperature has major impact on lifetime of the coating

Considering time dependent effects by pre-ageing

<table>
<thead>
<tr>
<th>Time at 1000°C</th>
<th>TGMF-cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>500 (25h)</td>
</tr>
<tr>
<td>250 h</td>
<td>1000 (50h)</td>
</tr>
<tr>
<td>500 h</td>
<td>until spallation</td>
</tr>
</tbody>
</table>

Pre-ageing + Thermomechanical fatigue
Failure after thermomechanical laboratory testing

after 933 TGMF-cycles & 500h pre-ageing at 1000°C
3-dimensional sketch of defects

Summary of experimental results

• Without pre-ageing no spallation up to 7000 cycles

• 250h (500h) pre-ageing + 1000 cycles, open delamination cracks, spallation

- Evolution of the 'smiley' cracks is linked to cracks in the TGO, perpendicular to the applied mechanical load.
- Initial TGO cracks are generated due to axial tensile stresses
- The questions are

 - How can axial tensile stresses evolve in the TGO during TGMF tests?
 - Why do they only evolve in pre-aged specimens?
After pre-ageing: bi-layer thermally grown oxide

200h/1000°C

Fine grained intermixed zone
$\text{Al}_2\text{O}_3 + \text{ZrO}_2$

Coarse grained
Al_2O_3
Numerical model: Geometry and boundary conditions

Bi-layered TGO

M. Hernandez, A.M. Karlsson, M. Bartsch: Surface Coatings & Technology 203, 3549-58, 2009
Stress free at homogenous temperature of 1000°C

Electron Beam - Physical Vapor Deposition (EB-PVD)

⇒ high residual stresses at ambient temperature
Numerical model: load cycle

- Temperature at the outer surface is shown
- Thermal gradient: time-dependent temperature difference between outer and inner wall (not shown)
- Mechanical cycle TGMF

Highest mechanical tensile load, thermal gradient near stationary conditions
Axial stresses for elastic – plastic material properties

Stress free at $T_{\text{processing}}$ (1000°C, homogenous)

Axial stresses across the specimen wall due to
- thermal gradient
- mechanical load
- property mismatch

TGO always under compression
even at highest mechanical tensile load

Surface temperature: 1000°C

M. Hernandez, A.M. Karlsson, M. Bartsch: Surface Coatings & Technology 203, 3549-58, 2009
Including time dependent TGO properties: growth strain and creep / relaxation

Thickening ε_t and lengthening ε_l growth strain

\[\varepsilon_l = 0.1 \cdot \varepsilon_t \]

Growth strain increases the compressive stress in TGO!

Relaxation decreases the compressive stress in TGO!

Effect of TGO properties on stress accumulation

Mech. Load
Temperature

1000°C
RT

time

External wall
Inner wall

Deformation of TGO
Linear-elastic
+ TGO-growth

Deformation of TGO
Effect of TGO properties on stress accumulation

Mech. Load

Temperature

1000°C

RT

Deformation of TGO

Deformation of TGO

External wall

Inner wall

fast relaxation

slow relaxation
Evolution of axial TGO-stresses

Hypothesis: Initiation of fatigue crack in TGO due to accumulation of tensile stress during subsequent TGMF-cycles
Open questions – and a method to get answers

• Mechanical material properties of the coating materials are still unknown: Temperature dependent elastic properties, yield strength, creep laws of TGO (intermixed zone and coarse grained layer), bond coat and TBC

• Strategy:
 • measuring the strains in the coating system during TGMF by means of high energy X-ray diffraction
 • calculating (fitting) the respective material properties by means of finite element simulation
Experimental set-up at Argonne Advanced Photon source

- Argonne National Laboratory, Argonne, Illinois
- Synchrotron high energy X-Ray beam-line; 65 keV beam energy
Top view of heater and beam

- 4 focused infrared lamps
 - 8 kW total

- Beam exit window
 - 17° 4θ

Servohydraulic testing machine on µm - positioning rig

Assembling heater, grips and specimen at Argonne APS
Measurement method

Loading parameter:
- thermal cycle (80 min)
- outer surface temperature max. 1000°C, temperature difference between outer and inner surface ca. 150°C
- variation of thermal gradient by variation of cooling flow rate
- superposition of mechanical load

Beam parameter:
- 65 keV beam energy
- exposure time 0.5 to 15 sec.

X-Ray diffraction 2-D strain measurements

- Measure radial position around azimuthal angle
- Calculate each directional strain using \((\text{Ro}-\text{R})/\text{Ro}\)
 - \(\text{R} = \) measured radius
 - \(\text{Ro} = \) strain free radius

K. Knipe, Nature Comm. 5 (2014) article Nr. 4559
YSZ - strain results

- No thermal gradient
- 25°C
- Variation of mechanical load
- X-Ray scan through coating thickness
- Every 3.5 minutes
- Window size 30 x 300 microns
- 10 window scan
Strain measurement during cyclic loading

- Outer surface ramped up to 1000°C in 20 minutes and then held for 40 minutes
- Coolant flow rate for gradient varied
 - 30, 50, and 75 % max. flow (100 SLPM* max)
- Constant nominal mechanical stress
 - 32, 64 and 128 MPa applied

SLPM* = standard liter per minute
Strain in YSZ during thermal cycle

- 64 MPa
- 75% cooling air flow rate

at room temperature:
- compressive in plane strain \(e_{22} \)
- tensile out of plane strain \(e_{11} \)

at high temperature:
- strain reduces (closer to stress free condition at manufacturing temperature)

\[\begin{align*}
\text{Outer Surface Temperature (deg C)} & \quad \text{YSZ (111) } e_{11} \\
0 & \quad -0.6 \\
20 & \quad -0.8 \\
40 & \quad -1 \\
60 & \quad -1.2 \\
80 & \quad -1.4 \\
100 & \quad -1.6 \\
120 & \quad -1.8 \\
\end{align*} \]

\[\begin{align*}
\text{Outer Surface Temperature (deg C)} & \quad \text{YSZ (111) } e_{22} \\
0 & \quad -1.8 \\
20 & \quad -1.8 \\
40 & \quad -1.8 \\
60 & \quad -1.8 \\
80 & \quad -1.8 \\
100 & \quad -1.8 \\
120 & \quad -1.8 \\
\end{align*} \]

K. Knipe, Nature Comm. 5 (2014) article Nr. 4559
Strain in bond coat β-NiAl during thermal cycle

- 64 MPa
- 75% cooling air flow rate

at room temperature:
- tensile in plane strain e_{22}
- compressive out of plane strain e_{11}

at high temperature:
- strain reduces (stress free at manufacturing temperature)

TGO stress in pre-aged specimen during thermal cycle

Pre-aged specimen: 304h at 1000°C
- the TGO experience tensile stresses under TGMF loading depending on applied mechanical tensile load and thermal gradient.
- Relaxation occurs during dwell time at high temperature, which is a condition for accumulating tensile stress during cycling.
Conclusions and outlook

• In situ strain measuring by X-ray diffraction
 • gives for each load case an equation for determining the respective material properties
 • test results can be used for validating numerical models and adapting laboratory experiments to more realistic conditions, e.g.
 • are dwell times and transients appropriate, e.g. time for relaxation processes within one load cycle appropriate? – example: stress accumulation in TGO
 • effect of time dependent processes captured?– TGO growth? Material property changes?

• Aim: validated realistic laboratory test for turbine blade materials for investigating damage mechanisms and contributing to life time modelling.

• Relevance-check of laboratory test: are observed damage mechanism and failure mode realistic?
Thank you for your attention!

Questions?

Acknowledgements:

- This material is based upon work supported by the National Science Foundation Grants OISE 1157619 and CMMI 1125696
- German Science Foundation (DFG) grant SFB-TRR103, project A3
- Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.
Publications

Contact: Prof. Dr.-Ing. Marion Bartsch
German Aerospace Center (DLR), Institute of Materials Research
Linder Höhe
D-51147 Köln
Phone: +49-(0)2203-601-2436
e-mail: marion.bartsch@dlr.de