Summer 5-24-2012

Plant-Made Influenza Virus-Like Particles: for Pandemic and Beyond

Nathalie Charland
Medicago

Follow this and additional works at: http://dc.engconfintl.org/vaccine_iv

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Vaccine Technology IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Plant-Made Influenza Virus-Like Particles: for Pandemic and Beyond

Nathalie Charland, PhD
Director, Product Portfolio

Vaccine Technology IV
Albufeira, Portugal
May 24, 2012
Forward-Looking Statements and Disclaimers

• This presentation contains forward-looking information and statements which constitute “forward-looking information” under Canadian securities law and which may be material regarding, among other things, the Company’s beliefs, plans, objectives, estimates, intentions and expectations. Forward-looking information and statements are typically identified by words such as “anticipate”, “believe”, “expect”, “estimate”, “forecast”, “goal”, “intend”, “plan”, “will”, “may”, “should”, “could” and similar expressions. Specific forward-looking information in this document includes, but is not limited to, statements with respect to the Company’s future operating and financial results, its research and development activities, its capital expenditure plans and the ability to execute on its future operating, investing and financing strategies. These forward-looking information and statements, by their nature, necessarily involve risks and uncertainties that could cause actual results to differ materially from those contemplated by these forward-looking statements. We consider the assumptions on which these forward-looking statements are based to be reasonable, but caution the reader that these assumptions regarding future events, many of which are beyond our control, may ultimately prove to be incorrect since they are subject to risks and uncertainties that affect us. Additional information regarding risk factors can be found in the Medicago Annual Information Form filed on March 29, 2012.

• Our statements of “belief” in respect of our product and partner product candidates are based primarily upon our results derived to date from our research and development program. We believe that we have a reasonable scientific basis upon which we have made such statements. It is not possible, however, to predict, based upon studies in vitro and animal studies whether a new therapeutic agent or technology will be proved to be safe and/or effective in humans. We cannot assure that the particular results expected by us will occur.

• Any forward-looking statements and statements of “belief” represent our estimates only and should not be relied upon as representing our estimates as of any subsequent date. Except as required by law, we do not assume any obligation to update any forward looking statements or statements of “belief”. We disclaim any intention or obligation to update or revise any forward-looking statements or statements of “belief”, whether as a result of new information, future events or otherwise. Nothing herein should be construed as an Offering of securities of the Company in any jurisdictions.
Reengineering vaccine design and production (beyond pandemic)

• Strains with pandemic potential are circulating every year; experts agree only a matter of time before a highly lethal strain develops due to strain mutations
 – Kawaoka’s & Fouchier’s studies

• Rapid response in pandemic vaccine production is needed to address rapid rates of infection & minimize deaths
 – In 2009 pandemic, time required to manufacture both egg- & cell-based vaccines resulted in “too little, too late” vaccine responses → no significant impact*

• Need for flexible technologies to respond to emerging or engineered biothreats
 – Multi-product platform

Medicago overview

<table>
<thead>
<tr>
<th>Focus</th>
<th>Vaccines & Protein-based pharmaceuticals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing technology</td>
<td>Transient expression in Tobacco</td>
</tr>
<tr>
<td>Vaccine technology</td>
<td>Virus-like particles</td>
</tr>
<tr>
<td>Vaccine discovery platform</td>
<td>VLP Express</td>
</tr>
</tbody>
</table>
| Headquarters, laboratories & cGMP facilities | Quebec City, CANADA
Research Triangle Park, NC, USA
Genopole d’Evry, FRANCE |
| Agreements | Mitsubishi Tanabe Pharma – Strategic Alliance
DARPA Award – US$21M
IDRI – Phase I H5 GLA, intradermal
Pharma & U.S. Army – Vaccines outside of flu |

$35M & 12 months to build
Capacity of 10M doses/month
Products

<table>
<thead>
<tr>
<th>Products</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pandemic influenza</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5 – Intradermal+GLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal influenza</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrivalent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undisclosed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ebola</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotavirus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Protalix is paving the way...

First plant-derived pharmaceutical approved by FDA on May 1st, 2012

Drug-making plant blooms

Approval of a ‘biologic’ manufactured in plant cells may pave the way for similar products.

BY AMY MAXMEN

It was midnight when an anxious Ari Zimran finally got the phone call for which he had been waiting. The news couldn't have been better: the drug he had worked on for nearly a decade had just been approved by the US Food and Drug Administration (FDA).

Zimran, who heads the Gaucher Clinic in Jerusalem and is a member of the scientific advisory board at Protalix Biotherapeutics, a small

<table>
<thead>
<tr>
<th>PLANTS IN THE PIPELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturers have begun or completed phase II clinical trials on a handful of biologics made in plants, and hope to follow Eliyso to market.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug</th>
<th>Condition</th>
<th>Company</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locteron (interferon-α)</td>
<td>Hepatitis C</td>
<td>Biolase Therapeutics</td>
<td>Duckweed</td>
</tr>
<tr>
<td>H5N1 vaccine</td>
<td>Influenza</td>
<td>Medicago</td>
<td>Tobacco</td>
</tr>
<tr>
<td>VEN100</td>
<td>Antibiotic-associated diarrhoea</td>
<td>Ventria Bioscience</td>
<td>Rice</td>
</tr>
<tr>
<td>CaroRx</td>
<td>Dental caries</td>
<td>Planet Biotechnology</td>
<td>Tobacco</td>
</tr>
</tbody>
</table>
Medicago’s manufacturing technology

Proprietary platform for the production recombinant proteins based on a transient expression technology in plants (N. benthamiana)

- **Plants & Agrobacterium preparation**
- **Infiltration**
- **Incubation**
- **Extraction**
- **Purification**
- **Medicago VLP**
- **Influenza virus**

- 19 days to 1st lot
- Rapid lot-release:
 - HA content
 - 14-days sterility test
Characteristics of the plant-made H5 VLP vaccine

- Lot-release assays include purity, potency by SRID, lipid and protein content, residual DNA, endotoxins, nicotine and anabasine content, sterility
- Additional characterization such as SEC, NTA, MFI, PDI, glycans
- Product purity 98% (HA0, HA1, HA2)
General safety profile
Phase 1 H1 VLP and Phase 2 part A H5 VLP

Similar profiles were observed for systemic AEs
Safety

IgE to plant glycans

<table>
<thead>
<tr>
<th>Clinical trial</th>
<th>Group</th>
<th>Number of subjects with IgEs ≥ grade 1 to bromelain at screening</th>
<th>Number of subjects that showed an IgE increase after vaccination</th>
<th>Number of subjects that showed detectable IgEs 6 months after vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 with H1 VLP (one dose)</td>
<td>Non-adjuvanted VLP (n=58)</td>
<td>3.5% (2/57)</td>
<td>0% (0/57)</td>
<td>1.8% (1/56)</td>
</tr>
<tr>
<td></td>
<td>Fluzone (trivalent, n=20)</td>
<td>0% (0/20)</td>
<td>0% (0/20)</td>
<td>0% (0/20)</td>
</tr>
<tr>
<td></td>
<td>Placebo (n=20)</td>
<td>0% (0/20)</td>
<td>0% (0/20)</td>
<td>0% (0/20)</td>
</tr>
<tr>
<td>Phase 2 with H5 VLP (two doses)</td>
<td>Adjuvanted VLP (n=192)</td>
<td>3% (6/191)</td>
<td>0% (0/188)</td>
<td>3% (6/191)</td>
</tr>
<tr>
<td></td>
<td>Non-adjuvanted VLP (n=29)</td>
<td>7% (2/29)</td>
<td>0% (0/29)</td>
<td>4% (1/27)</td>
</tr>
<tr>
<td></td>
<td>Placebo (n=27)</td>
<td>0% (0/28)</td>
<td>0% (0/28)</td>
<td>0% (0/28)</td>
</tr>
</tbody>
</table>

- No onset of allergic reactions correlating with *in vitro* assay ([manuscript in preparation](#))
Antibody response – H5 VLP
HI test

Seroconversion rate after two doses of H5 VLP (18-64 years of age)

<table>
<thead>
<tr>
<th>H5 VLP Vaccine</th>
<th>5 µg +Al</th>
<th>10 µg +Al</th>
<th>20 µg +Al</th>
<th>30 µg +Al</th>
<th>45 µg +Al</th>
<th>45 µg +Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I (groups of 12 subj.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.7 (0.02-0.48)</td>
<td>25.0 (0.06-0.57)</td>
<td>58.3 (0.28-0.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase II (part A, groups of 30 subj)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.6 (0.39-0.77)</td>
<td>53.6 (0.34-0.73)</td>
<td>46.7 (0.28-0.66)</td>
<td>21.4 (0.08-0.41)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preclinical and Clinical Development of Plant-Made Virus-Like Particle Vaccine against Avian H5N1 Influenza

Nathalie Leduc1, Brian J. Ward2, Sonia Triepienier3, Emanuele Mentonoli4, Michele Dargis3, Giulia Lapini2, Louis P. Vezina1

1 Medicago Inc., Galilee, Canada, 2Newman Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Canada, 3Ministero della Sanità, Rome, Italy, 4Istituto Superiore di Sanità, Rome, Italy
Antibody response – H5 VLP

Phase II trial part B

Seroconversion rates after two doses

<table>
<thead>
<tr>
<th>Age Group</th>
<th>H5 VLP Vaccine, 20 µg dose + alum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-29 n=23</td>
</tr>
<tr>
<td></td>
<td>30-39 n=22</td>
</tr>
<tr>
<td></td>
<td>40-49 n=26</td>
</tr>
<tr>
<td></td>
<td>50-60 n=26</td>
</tr>
<tr>
<td>HI test</td>
<td>56.5%</td>
</tr>
<tr>
<td>SRH test</td>
<td>52.2%</td>
</tr>
<tr>
<td>MN test</td>
<td>52.2%</td>
</tr>
</tbody>
</table>

All vaccine doses statistically different from placebo

H5 VLP vaccine equally immunogenic in young and older adults
Duration of antibody response – H5 VLP
HI titers for homologous strain

<table>
<thead>
<tr>
<th>Dose of H5 VLP (µg)</th>
<th>% of subjects with positive antibody response (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-vaccination</td>
</tr>
<tr>
<td>20 + alum</td>
<td>0</td>
</tr>
<tr>
<td>30 + alum</td>
<td>0</td>
</tr>
<tr>
<td>45 + alum</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Placebo</td>
<td>0</td>
</tr>
</tbody>
</table>

Alum showed benefit on the antibody level for the H5 VLP vaccine although formulation not optimized at high vaccine dosages
Antibody response – H1 VLP

HI test

Seroconversion rate after one single non-adjuvanted dose of H1 VLP (18-49 years of age)

<table>
<thead>
<tr>
<th>H1 VLP Vaccine (groups of 20 subj.)</th>
<th>5 µg</th>
<th>13 µg</th>
<th>28 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61.1</td>
<td>63.2</td>
<td>82.4</td>
</tr>
<tr>
<td></td>
<td>(0.36-0.83)</td>
<td>(0.38-0.84)</td>
<td>(0.60-0.97)</td>
</tr>
</tbody>
</table>
H1 VLP Vaccine Induced a Long Lasting Memory Multifunctional T cell Response

Memory CD4^+ T Cells

Memory CD8^+ T Cells

H1 (VLP) Response

Polyfunctional T cells
H1 VLP Vaccine Induces Cross-Reactive CD4⁺ T cell Responses against HA (H5N1)

Total CD4⁺ T cell response against HA (H1N1):
- PBMC at +6 month post-vaccine
- In vitro stimulation with H5 VLP and cytokine detection

* P<0.05 (Mann-Whitney)
Main conclusions from clinical trials

• Safety
 – Safe and well tolerated
 – More than 400 subjects dosed
 – 1 or 2 doses
 – With or without alum
 – Dosages up to 45 µg
 – No onset of allergic reactions

• Immunogenicity
 – The HA-VLP vaccine induces durable antibody response
 – Durable, poly-functional and cross-reactive T Cell responses to influenza HA antigens
 – Strong innate immune response induced (data not shown)
Expanding the applications of the manufacturing and vaccine platforms

- Can the manufacturing and vaccine platforms also produce VLPs presenting non-influenza antigens?
 - different genomic organization (RNA, DNA, polyprotein…)
 - different envelope proteins structure
 - different budding sites and requirements
VLP Express: Accelerating the discovery of VLP-based vaccines

- Scale-down of manufacturing technology
 - HT cloning (96 DNA constructs in 10 days)
 - Automated HT infiltration (50 expression strategies/days)
 - HT monitoring of viral protein and VLP accumulation
 - Generic purification method

- Screening
 - Capacity improved 10X
 - Time to identification 10X faster
Flexibility:

Broadening applications of manufacturing & vaccine platforms

• Throughput of VLP Express enables running multiple projects in parallel

• In 2011, the discovery team has tested >2,000 engineering approaches and identified those driving the assembly of VLPs for 7 different families of viruses:
 – Influenza (including 20 sub-types)
 – Rabies
 – Proprietary undisclosed enveloped VLP
 – Ebolavirus
 – Varicella-zoster virus
 – HIV
 – Partnered undisclosed capsid VLP

• Advantages
 – Testing of multiple expression vectors in parallel
 – Comparing different protein engineering strategies
 – Co-expressing various proteins using separate Agrobacteria
 – Rapid optimization of expression conditions
 – Allow development of vaccines with "built-in" efficacy and manufacturing readiness
Advantages of Medicago’s plant-based technology

• Pandemic
 – Target any HA sequence including wild-type
 – Induce strong antibody responses
 – Induce a balanced immune response
 • Strong CD4+ and CD8+ memory
 • Cross-reactive for other strains
 – More durable strain-specific immunity
 – Superior cross-reactivity
 – Possible role in the elderly

• Other emerging threats
 – Many features of plant-made influenza VLPs vaccines applicable to other indications (natural or man-made)
 – Flexibility, speed, scale-up & cost advantages
Acknowledgements

At Medicago
Research and Innovation team
Product Development team
Manufacturing and QA teams

Collaborators

GLA adjuvanted vaccine
From IDRI: Darrick Carter Patti Hon Anthony Desbiens
Steve Reed Rhea Coler
Susan Baldwin Chris Fox

From CSU (animal studies): Richard Bowen

Cell-mediated Immune response
ImmuneCarta: David Favre
McGill University: Brian J. Ward’s team

Sponsors

© 2012 Medicago Inc. All rights reserved
Obrigada!