Flunisyn: Advanced development of a synthetic universal influenza t-cell vaccine

Campbell Bunce
ITS ltd

Follow this and additional works at: http://dc.engconfintl.org/vaccine_iv

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Flunisyn: Advanced Development of a Synthetic Universal Influenza T-cell Vaccine

Vaccine Technology IV
Albufeira, Portugal

24th May 2012
Disclaimer

Whilst all reasonable care has been taken to ensure that this presentation is accurate and that the forecasts, opinions and expectations contained in this presentation are fair and reasonable, this presentation has not been independently verified and accordingly no representation or warranty, expressed or implied, is made as to the accuracy, fairness or completeness of this presentation and no reliance should be placed on the accuracy, fairness or completeness of this presentation. None of the Company, the Company's employees, shareholders or any of their respective advisers accepts any liability or responsibility for any loss howsoever arising, directly or indirectly, from any use of this presentation or its contents. Recipients of this presentation should conduct their own investigation, evaluation and analysis of the Company.
Immune Targeting Systems

London based biotech company developing vaccines for mutating viruses and cancer

Lead Program: Universal Flu vaccine (Flunisyn™)

- 2nd Phase-I study complete (Flunisyn +/- Adjuvant) - Phase 2a initiation H2-2012
- Existing flu vaccines – poorly effective & don’t deliver T-cell correlates of protection

Pipeline extension offers unique targeted product profiles

- Universal Hepatitis B therapeutic vaccine – targets antiviral treatment cessation (7MM/Asia)
- Cancer vaccine platform – Maximising immunogenicity whilst eliminating HLA screening

Investors:
Mutating Viruses: Disease protection requires T-cell immunity

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>Benefit</th>
<th>Flunisyn™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-use capability (Booster effect) *</td>
<td>Single vaccine regimen (Avoids heterologous prime-boost strategy)</td>
<td>✓</td>
</tr>
<tr>
<td>Responder frequency</td>
<td>High % respond to vaccination (Eliminates HLA typing of human subjects)</td>
<td>✓</td>
</tr>
<tr>
<td>Breadth of response</td>
<td>Improved antiviral activity</td>
<td>✓</td>
</tr>
<tr>
<td>Magnitude & Quality of response</td>
<td>Improved antiviral activity</td>
<td>✓</td>
</tr>
<tr>
<td>Broad cross reactive T-cell immunity</td>
<td>All viral strains / genotypes</td>
<td>✓</td>
</tr>
</tbody>
</table>

Historical T-cell vaccine pipeline failures highlight rate limiting immunological performance parameters

Improved vaccines must address full correlates of protection (unachieved by adjuvants alone)
DepoVaccine™ Promotes a Short Term Antigen Depot

DepoVaccines promote an antigen depot \((↑ T_{1/2}) \)
Depot forming adjuvant boosts immunogenicity

Synthetic: Scalable, Stable & Characterisable

<table>
<thead>
<tr>
<th>Selection Parameters</th>
<th>Typical High Density Antigen Sequence Profile (35 amino Acid Reading Frame)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bird</td>
<td>Species</td>
</tr>
<tr>
<td>H1N1</td>
<td>Human</td>
</tr>
<tr>
<td>H1N2</td>
<td>Avian</td>
</tr>
<tr>
<td>H2N2</td>
<td>Avian</td>
</tr>
<tr>
<td>H3N2</td>
<td>Avian</td>
</tr>
<tr>
<td>H5N1</td>
<td>Avian</td>
</tr>
<tr>
<td>H7N7</td>
<td>Avian</td>
</tr>
</tbody>
</table>

Densigen™

- 35aa conserved immunoprevalent antigen
- Non-envelop viral protein hydrophobic cores

Freeze Dried Nanoparticle Formulation
Flunisyn – contains 6 different Densigens

Summary

Company

DepoVaccine Platform

Flunisyn™
HBV
Oncology

IMMUNE TARGETING SYSTEMS
Flunisyn™: First Time in Human Study

Objective: Dose escalation study to establish initial data set with prototype formulation of Flunisyn (non-adjuvanted) – double blind and placebo controlled

1. Safety & immunogenicity (dose response)
2. Quality of immune response
 a) T cell phenotype (cytokine expression, CD4/CD8)
 b) X-reactivity to disparate influenza strains

Study design:

<table>
<thead>
<tr>
<th>Group (n = 12 per cohort)</th>
<th>Injections</th>
<th>Blood samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>Day 1, 29 & 99</td>
<td>Day -7. 1, 8, 15, 29, 36, 53, 99, 106, 113, 279</td>
</tr>
<tr>
<td>Flunisyn (50µg/peptide)</td>
<td>Day 1, 29 & 99</td>
<td>Day -7. 1, 8, 15, 29, 36, 53, 99, 106, 113, 279</td>
</tr>
<tr>
<td>Flunisyn (150µg/peptide)</td>
<td>Day 1, 29 & 99</td>
<td>Day -7. 1, 8, 15, 29, 36, 53, 99, 106, 113, 279</td>
</tr>
<tr>
<td>Flunisyn (500µg/peptide)</td>
<td>Day 1, 29 & 99</td>
<td>Day -7. 1, 8, 15, 29, 36, 53, 99, 106, 113, 279</td>
</tr>
</tbody>
</table>
Flunisyn™ Phase-I Clinical Summary

Flunisyn is safe and well tolerated at all doses tested

Immunogenicity:

Magnitude & booster amplification

- Increases in both CD4+ and CD8+ T cells post vaccination (day 36)

Flunisyn boosts low levels of memory T-cells

Increases in both CD4+ and CD8+ T cells post vaccination (day 36)

- Flunisyn-specific T cell response (n=11)
- measured by intracellular cytokine staining

Summary Company DepoVaccine Platform

Flunisyn™ HBV Oncology

IMMUNE TARGETING SYSTEMS
No difference in HLA-restriction between vaccine responders and overall HLA prevalence

<table>
<thead>
<tr>
<th>HLA-supertype</th>
<th>Responder</th>
<th>Overall Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>n / 21</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>HLA-A01</td>
<td>8</td>
<td>38%</td>
</tr>
<tr>
<td>HLA-A02</td>
<td>11</td>
<td>52%</td>
</tr>
<tr>
<td>HLA-A03</td>
<td>12</td>
<td>57%</td>
</tr>
<tr>
<td>HLA-A24</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>HLA-B07</td>
<td>14</td>
<td>67%</td>
</tr>
<tr>
<td>HLA-B08</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>HLA-B27</td>
<td>4</td>
<td>19%</td>
</tr>
<tr>
<td>HLA-B44</td>
<td>8</td>
<td>38%</td>
</tr>
<tr>
<td>HLA-B58</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>HLA-B62</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>HLA-DR1</td>
<td>5</td>
<td>24%</td>
</tr>
<tr>
<td>HLA-DR3</td>
<td>4</td>
<td>19%</td>
</tr>
<tr>
<td>HLA-DR4</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>HLA-DR7</td>
<td>7</td>
<td>33%</td>
</tr>
<tr>
<td>HLA-DR11</td>
<td>4</td>
<td>19%</td>
</tr>
<tr>
<td>HLA-DR13</td>
<td>4</td>
<td>19%</td>
</tr>
<tr>
<td>HLA-DR15</td>
<td>5</td>
<td>24%</td>
</tr>
</tbody>
</table>

Flunisyn specific T-cells recognise cells infected with different influenza A virus strains

Cross-reactivity correlated with degree of hepatoma cell line infectivity

* Cross-reactivity correlated with degree of hepatoma cell line infectivity
Flunisyn™: Key Performance Parameters

Immunologically optimum dose – highlights its best-in-class potential:

- **Responder frequency**: 10/12 subjects met responder criteria (without HLA screening)
- **Booster amplification**: confirmed (at 1st & 2nd booster)
- **Breadth**: mean 4.5 / 6 antigens (incl. multi-epitopic CD4 & 8 / antigen)
- **Magnitude**: significant increase over base line
- **Cross reactivity**: all potential seasonal & pandemic flu strains
Advax Significantly Enhances T-cell Immunogenicity (non Clinical)

Advax (microparticulate Inulin) enhances Flunisyn & functional antibody responses to hemagglutinin (Rats)

- Magnitude of response (20X)
- Breadth of response (>50% include multi-epitopic / peptide responses)
- CD8 profile (30-40% of total response)
- Antiviral cytokines (500X)
- HAI antibody titres (8X or 1:320)
Improved Influenza Disease Protection

- Adds back missing T-cell correlates
 - All potential influenza-A strains
 - Annual prime vaccination

- Boosts antibody performance
 - Improved HAI titres
 - Improved cross reactivity

Counteracting Immunosenescence mechanisms
Regulatory “Risk : Benefit” justification

Lead indication: Improved Elderly seasonal flu vaccine – Flunisyn / MP-Inulin + TIV

Established seroprotection surrogate end-points are not correlated with clinical disease protection
 - Clinical studies highlight T-cell immunity drives influenza disease protection
 - Current seasonal flu vaccine does not deliver T-cell immunity
Developing Unique Products and Platform

Flunisyn Programme:

• Start First in Elderly study Q2 2012
• Live virus challenge study H1 2013

Universal Hepatitis B vaccine (Hepsyn) Programme:

• Pre-clinical GxP 2012/2013
• Phase 1b H2 2013

Oncology Programme:

• PoC Q3 2012
• Target selection Q3 2012