Transesterification of *Jatropha Curcas* Oil Radiated with Microwave
• Introduction
• Methodology
• Results and Discussion
• Conclusion
• BACKGROUND

- World is now facing twin energy-related threats:
 - i) depletion of fossil fuel
 - ii) environmental harm caused by consuming too much of fossil fuel
- Biodiesel can be an alternative fuel
- Rudolf Diesel fueled his diesel engine invented in 1898 by peanut oil
- Vegetable oil (biodiesel) was used until 1920s
- Disadvantages of vegetable oils as diesel fuel:
 - i) Higher viscosity
 - ii) Lower volatility
 - iii) causing injection coking and carbon deposits

Unrefined Jatropha oil can be used in certain types of diesel engines, such as Lister-type engines; Commonly used in developing countries to run small-scale flourmills or electric generators.
Methods of reducing vegetable oils viscosity
 i) Transesterification
 ii) Pyrolysis (Thermal cracking)
 iii) Microemulsions
 iv) Blending
 v) Dilution

Transesterification methods
 i) Microwave method
 ii) Ultrasonic method
 iii) Supercritical method
 iv) Batch process method
• **Jatropha Curcas**

• Drought resistant shrub or tree (1-7 m)

• Native to Central America and has grown in many climatic zones with rainfall intensity 250 – 1200 mm/year especially in tropical (Malaysia, Brazil, Indonesia) and subtropical areas, including Africa, India, and North America.

• Resistant to a high degree of aridity, low fertility, and low moisture demand.

• Well adapted in every texture of soils; gravelly, sandy and saline, ph 5 – 6.5

• Maximum productivity in 5 years

• Can live up to 50 years
• Central America
• Africa and Asia
• India
• Bangladesh
• Mali
• Zambia
• South Africa
• Malaysia/Indonesia
• Tanzania

• Barbados nut
• Physic nut
• Ratanjut
• Sadamandar/Erenda/Jamalgota
• Pourghere
• Bemba
• Venda/Swahili
• Pokok jarak
• Makanean
Parts of *Jatropha Curcas* Plant

- **Jatropha tree**
 - Root
 - Stem
 - Leaf
 - Flowers
 - Fruits
 - Kernels
 - Seeds
 - Fruit husk
 - Oil
 - Seed cake
 - Seed husk
Female:male flowers range from 13:1 to 29:1 which give more number of seeds.

Fruits are produced in winter or in good moisture and sufficiently high temperature.

The seeds become mature when fruits change from green to yellow-brown.
They contain 30-50% oil that can be processed to produce fuel.

Has 4 – 6 lobes.
10 – 15 cm in length and width.
MULTIPLE USES OF Jatropha Curcas

Jatropha Curcas

Leaves
- Feedstock for silkworm
- Anti inflammatory
- dye
- Toothache

Latex
- Wound healing
- Pesticide
- Mollusk control
- Stop bleeding

Bark
- Rich in tannin
- Dark blue dye
- Fish poisoning

Root
- Medicinal purposes (anti helminthic, pneumonia syphilis)

Tree
- Soil erosion controller
- Firewood
- hedge plant
- Plant protector
- Reclaim wasteland

Seeds
- Fertilizer
- Biogas
- Adsorbent

Flowers
- Bee food

Seed cake
- Fuel
- Soap
- Lubricant
- Insecticide
- Cosmetic
- Varnish
- Candle illuminant
- Polyol
- Plastics
- Alkyd resin
- Thermal stabilizer

Oil
- Adsorbent
- Directly combustible by product
- Gasification feedstock

Seed husk
- Combustible
- Green manure
- Biogas production
- Contain tannin

Fruit husk
- Soil erosion controller
- Firewood
- Hedge plant
- Reclaim wasteland

Multiple Cropping System
• **Jatropha Composition**

1000 kg jatropha fruits

→ 350 kg fruit husks
→ 650 kg seeds
→ 228 kg seed husks
→ 422 kg kernels

- 245 kg oil
 - 24.5% from total fruits
 - 58% from kernels

- 177 kg seed cake

• **Oil Extraction**

Mechanical
- Common use whole seeds
- Increasing oil yield by cooked seed

Chemical
- Only use kernel as feed
- Most common use n-hexane to result highest yield

• **Seed Yield**

- Seed should be harvested at maturity
- Depending on:
 - site characteristics
 - genetics
 - plant age
 - management
- One ha of plantation will give 1.6 - 3 metric tons of oil
Fatty Acid Composition of Several Oils

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Carbon Atoms/Double Bond</th>
<th>Jatropha Oil</th>
<th>Soybean Oil</th>
<th>Palm Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauric</td>
<td>C(_{12}/0)</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Myristic</td>
<td>C(_{14}/0)</td>
<td>0.1</td>
<td>0.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Palmitic</td>
<td>C(_{16}/0)</td>
<td>14.2</td>
<td>11.0</td>
<td>44.0</td>
</tr>
<tr>
<td>Palmitoleic</td>
<td>C(_{16}/1)</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stearic</td>
<td>C(_{18}/0)</td>
<td>7.0</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Oleic</td>
<td>C(_{18}/1)</td>
<td>44.7</td>
<td>23.4</td>
<td>39.2</td>
</tr>
<tr>
<td>Linoleic</td>
<td>C(_{18}/2)</td>
<td>32.8</td>
<td>53.2</td>
<td>10.1</td>
</tr>
<tr>
<td>Linolenic</td>
<td>C(_{18}/3)</td>
<td>0.2</td>
<td>7.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Arachidic</td>
<td>C(_{20}/0)</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Behenic</td>
<td>C(_{22}/0)</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
</tbody>
</table>
Physical and Thermal Properties of Vegetable Oils

<table>
<thead>
<tr>
<th>Properties</th>
<th>Jatropha</th>
<th>Soybean</th>
<th>Palm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetane number</td>
<td>46.3</td>
<td>37.9</td>
<td>42</td>
</tr>
<tr>
<td>Cloud point ($^\circ$C)</td>
<td>2</td>
<td>-3.9</td>
<td>31.0</td>
</tr>
<tr>
<td>Flash point ($^\circ$C)</td>
<td>235</td>
<td>254</td>
<td>267</td>
</tr>
<tr>
<td>Pour Point ($^\circ$C)</td>
<td>-3</td>
<td>-12.2</td>
<td>-</td>
</tr>
<tr>
<td>Carbon residu (% wt)</td>
<td>0.38</td>
<td>0.27</td>
<td>-</td>
</tr>
<tr>
<td>Heating Value (MJ/kg)</td>
<td>39.63</td>
<td>39.6</td>
<td>-</td>
</tr>
<tr>
<td>Oil content from kernel (%)</td>
<td>58</td>
<td>18.35</td>
<td>44.6</td>
</tr>
</tbody>
</table>
• MICROWAVE TRANSESTERIFICATION

- Conventional heating of tranesterification process (batch, continuous and supercritical methanol) consumes more energy and takes long preheat and reaction time (optimally ~ 1hr). What is the suitable transesterification method to overcome these problem?

- How to reduce the cost of production of biodiesel?

- Microwave irradiation as an alternative energy stimulant – reaction time ↓, energy ↓, production cost ↓.
TYPES OF TRANESTERIFICATION

- **Catalytic Transesterification**
 - Alkali (Homogeneous)
 - Acid (Homogeneous)
 - Alkali and Acid (Heterogeneous)

\[
\text{Triglyceride} + 3\text{CH}_3\text{OH} \rightleftharpoons \text{Mangkin} \rightarrow \text{Methanol} + \text{Glycerol} + \text{Methyl ester}
\]

- **Supercritical Alcohol Transesterification**
 - Non-Catalytic Supercritical Alcohol
 - Catalytic Supercritical Alcohol

- **Biocatalytic Transesterification**
Microwave
• Microwave frequencies occupy the electromagnetic spectrum between radio frequencies and infrared radiation.

• Microwave Frequencies: **300GHz to 300MHz** which corresponds to the wavelengths of **1mm** to **1m** respectively.

• 2.45 GHz → 12.2 cm
ADVANTAGES OF MICROWAVE HEATING OVER THERMAL HEATING

- Microwave Heating
- Thermal Heating
Methodology

Conventional

1. **Dry and De-Shelled the *Jatropha curcas* fruit at 102°C for 35 Minutes**
2. The crushed *Jatropha curcas* fruit, defatted in soxhlet extractor for four hours using hexane as a solvent in 60°C
3. The extracted oil were then transferred into a the rotary evaporator to recover hexane from oil mixture at 80°C
4. Transesterification with homogenous catalyst in 1-3 hours
5. Separation of biodiesel from the reaction mixture using centrifuged at 6500 rpm for 15 minutes and the top methyl ester phase was separated from glycerol phase

Asissted by Microwave

1. **Dry and De-Shelled the *Jatropha curcas* fruit at 102°C for 35 Minutes**
2. The crushed *Jatropha curcas* fruit, defatted in soxhlet extractor for four hours using hexane as a solvent in 60°C
3. The extracted oil were then transferred into a the rotary evaporator to recover hexane from oil mixture at 80°C
4. Transesterification assisted by microwave heating irradiation with homogenous catalyst in 3, 5, 7 and 9 minutes
5. Separation of biodiesel from the reaction mixture using centrifuged at 6500 rpm for 15 minutes and the top methyl ester phase was separated from glycerol phase
• MATERIALS AND METHODS

• Microwave Apparatus

• Model: MW 650 (MW Discovery Ltd., Canada)
• Exit Power: 1250 watts
• Microwave Frequency: 2.45GHz

• Microwave heating system used for transesterification reaction
Preliminary Results

Biodiesel Production at oil to methanol 1:18

Biodiesel Production at oil to methanol 1:30

Biodiesel production at different reaction time
Jatropha can produce more oil per ha compare to common alternatives (soybeans, cotton seed, rapeseed, sunflower, groundnuts).

If investigation of its genetic diversity and its yield potential had been covered by adequate scientific research, jatropha could be a very potential crops for energy and other uses.

Microwaves energy can be one of the alternative method to convert jatropha crude oil to biodiesel.

The maximum biodiesel production is with 86.3% at 7 minutes compare 1-3 hours with conventional method reaction time in excess of methanol.
Members in Jatropha Research Group

Assoc. Prof. Dr Zahira Yaakob, Group Leader, Product Development

Assoc. Prof. Dr. Siti Rozaimah Sheik Abdullah, Polymer, Waste water and detoxification

Assoc. Prof. Dr. Siti Kartom Kamarudin, Process Design and Optimisation

Assoc. Prof. Dr. Jaharah Abd Ghani, Expeller and Harvester Design

Assoc. Prof. Dr. Mohd Sobri Takriff, Product Development

Dr. Manal Ismail, Transesetrification and direct hydrogeantion
Cont. Members in Jatropha Research Group

Dr. Nurina Anuar, Plant Propagation, soil suitability

Dr. Masturah Markom, Microalgae for fuel

Dr. Jamaliah Jahim, Biomass Conversion

Prof. Dr. Yusoff Ali, Engine testing

Mr. Norhisham Tan Kofli, Medicinal use, ethanol production
Acknowledgement

• I would like to thank National University of Malaysia (UKM) and Ministry of Science, Technology and Innovation for the financial support to carry out this research.
• Also many thanks to all the researchers and students.
• We would like to welcome any interested parties to collaborate on the R& D.
- OBRIGADO
- TERIMA KASIH
- THANK YOU