Evaluation of the environmental benefits of biochar addition into concrete-based composites

Isabella Bianco
DIATI, Politecnico di Torino, Italy

Mauro Giorcelli
DIATI, Politecnico di Torino, Italy

Massimo Rovere
DIATI, Politecnico di Torino, Italy

Alberto Tagliaferro
DIATI, Politecnico di Torino, Italy

Gian Andrea Blengini
DIATI, Politecnico di Torino, Italy

Follow this and additional works at: http://dc.engconfintl.org/biochar

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Isabella Bianco, Mauro Giorcelli, Massimo Rovere, Alberto Tagliaferro, Gian Andrea Blengini, and Silvia Bobba

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/biochar/39
EVALUATION OF THE ENVIRONMENTAL BENEFITS OF BIOCHAR ADDITION INTO CONCRETE-BASED COMPOSITES

Mauro Giorcelli, Massimo Rovere, Alberto Tagliaferro
DIATI, Politecnico di Torino

Isabella Bianco, Gian Andrea Blengini, Silvia Bobba
DIATI, Politecnico di Torino
Students > 30,000

Biochar: Production, Characterization and Applications
LCA group @ Polito

Expert Team with years of experience (http://areeweb.polito.it/ricerca/LCA/)
coordinated by

Prof. Blengini: Associate professor at Politecnico di Torino
and
Senior Researcher at Joint Research Centre of European Commission - European Platform on Life Cycle Assessment (EPLCA)

Biochar: Production, Characterization and Applications
Outline

1. LCA definition
2. LCA crucial aspects
3. LCA for innovative products
4. LCA «case study»: Concrete vs Concrete&Biochar
5. Conclusions
LCA definition

• LCA: Life Cycle Assessment
• UNI EN ISO14040-44: LCA is the « compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle »
• A Foundamental Tool for Assessing Environmental Performance
La definizione di Ica l'hai presa dalla norma?
Utente sconosciuto, 7/25/2017
LCA Crucial aspects

Aspects not included/evaluated in LCA:
- Materials Cost
- Visual Impact on the Landscape
LCA for innovative products

Biochar: Production, Characterization and Applications

LCA «case study»
Concrete vs Concrete with Biochar

The aim of this work:

Concrete (100% Cement)

Concrete with Biochar (70% Cement, 30% Biochar)

Functional Unit: 1 dm^3

Biochar: Production, Characterization and Applications
LCA «case study»
Concrete vs Concrete with Biochar

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit</th>
<th>Standard Concrete*</th>
<th>Concrete with Biochar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>kg</td>
<td>0.45</td>
<td>0.29</td>
</tr>
<tr>
<td>Biochar</td>
<td>kg</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>Fine aggregated (Sand)</td>
<td>kg</td>
<td>0.66</td>
<td>0.60</td>
</tr>
<tr>
<td>Coarse aggregated (Gravel)</td>
<td>kg</td>
<td>1.23</td>
<td>1.12</td>
</tr>
<tr>
<td>Water</td>
<td>kg</td>
<td>0.21</td>
<td>0.16</td>
</tr>
<tr>
<td>Water/Cement ratio</td>
<td>-</td>
<td>0.47</td>
<td>0.55</td>
</tr>
<tr>
<td>Oil</td>
<td>MJ</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Electricity</td>
<td>MJ</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>2.2</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Biochar: Production, Characterization and Applications

LCA «case study»
Concrete vs Concrete with Biochar

Biochar concrete; at construction yard

Raw materials
- Portland cement
- Sand
- Gravel
- Biochar

Plant
- Biochar concrete; at plant

Construction yard
- Biochar block; at construction yard

Biochar «waste material»
Zero burden approach: waste has no impacts/benefits

Biochar: Production, Characterization and Applications
LCA «case study»
Concrete vs Concrete with Biochar

Biochar concrete; at construction yard

Raw materials

Biochar «waste material»
Zero burden approach: waste has no impacts/benefits

Biochar: Production, Characterization and Applications
LCA «case study»
Concrete vs Concrete & Biochar

Biochar: Production, Characterization and Applications
LCA «case study»
Concrete vs Concrete with Biochar

Biochar: Production, Characterization and Applications

![Graph showing climate change impact of block production and transportation to yard for Biochar concrete block and Standard concrete block.]

- **Climate Change [kg CO2 eq.]:**
 - **Block production:**
 - Biochar concrete block: 0.28 kg CO2 eq.
 - Standard concrete block: 0.43 kg CO2 eq.
 - **Transportation to yard:**
 - Biochar concrete block: 0.05 kg CO2 eq.
 - Standard concrete block: 0.05 kg CO2 eq.

Notes:
- 1 dm³
LCA «case study»
Concrete vs Concrete with Biochar

CONTRIBUTION ANALYSIS of a standard concrete block [1 dm³]

ReCiPe 1.08 Midpoint (H) - Climate change, incl biogenic carbon [kg CO2-Equiv.]

Biochar: Production, Characterization and Applications
Conclusions
• Preliminary LCA study on Concrete VS Concrete with Biochar
• The major environmental benefits come from the reduction of cement
 • kg of CO₂ equiv. saved ~35%
 • kg CFC-11 equiv. saved ~35%
• Primary energy demand -30%

1% substitution of Cement with Biochar

~1% benefit for impact categories of Climate change, Ozone depletion and primary energy

??? Economic point of view
??? Landscape point of view

Biochar: Production, Characterization and Applications
Thank you for your attention... to our Earth
The concept of global warming was created by and for the Chinese in order to make U.S. manufacturing non-competitive.