Single-use capacitance measurement of cell viability

Dan Kopec
Sartorius Stedim

Stuart Tindal
Sartorius Stedim

Marcus Weise
FH Aachen

Sven Groß
Sartorius Stedim

Henry Weichert
Sartorius Stedim

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/biopoly

Part of the Materials Science and Engineering Commons

Recommended Citation

http://dc.engconfintl.org/biopoly/46

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Performance and accuracy of single-use viable biomass measurement

PAT Tools for Bioprocess Monitoring & Control

Jochen Scholz1, Stuart Tindal1, Henry Weichert1, Sebastian Ruhl1, Ute Husemann1, Gerhard Greller1, John Carvell2
1Sartorius Stedim Biotech GmbH, August-Spindler-Strasse 11, 37079 Gottingen, Germany
2Aber Instruments Ltd, 5 Science Park, Aberystwyth, UK

Introduction
According to a number surveys, the monitoring of viable biomass is the most requested single-use parameter in industrial cell cultivation [1][2]. Viable biomass progress during a cultivation process is a key performance indicator and yields deeper process knowledge and the ability to defining harvest or infection points. Offline sampling methods, such as Trypan blue systems still lead the biomass monitoring in bioproduction. However, these offline methods are manual and based on representative sample removal, sample preparation and independent data generation. Typically, they are subject to operator errors, operator availability and a risk of contamination of the cultivation.

Biomass monitoring
The capacitance method for in-situ detection of viable biomass is already well established in the biotech industry. Here, it uses traditional stainless steel equipment. Progressively, industrial cell cultivation has tended more to single-use (SU) vessels and equipment [2]. This presentation illustrates test results for the first fully integrated online biomass measurement solution for SU systems. Where the electronics are integrated into the local controller and the sensor disc integrated into the gamma irradiated bag.

Experimental Approach
BioPAT ViaMass sensor discs were integrated into Flexsafe® RM bags and used for the cultivations using rocking motion agitation. These systems utilize capacitance technology from ABER Instruments Ltd. to determine the viable biomass [3]. The cultivation experiments were performed at 580 kHz with polarization correction applied. The SU sensor disc consists of HDPE with platinum electrodes. The sensor fulfills FDA and USP class VI requirements and has been qualified using Sartorius Stedim Biotech validation protocols. Biological, chemical and physical tests of integrated sensor discs post gamma irradiation gave excellent compatibility to the relevant pharmacopoeias and guidelines. Sensor discs were welded into Flexsafe® RM optical bags with different volumes (10L, 20L and 50L). The cultivation was controlled using a Biostat® RM optical system and all data was recorded via the local controller and the sensor disc measurement solution for SU systems.

CHO Cultivation
Figure 4 shows the results of a CHO cultivation in Flexsafe® RM 50 L. The capacitance signal from BioPAT ViaMass was compared with the viable cell density measurement from the Cedex HiRes and the wet cell weight as a reference. In addition, the Cedex offers the average cell diameter. With this, the average cell volume was calculated then multiplied with the viable cell density. This results in the viable cell volume (cm²/mL), which represents the viable biomass as percentage of the total volume. The error bars of viable cell density in figure 4 are the standard deviations given by the Cedex results.

During the exponential phase (first 6 days) the capacitance signal correlates excellently with both the viable cell density and the viable cell volume. Then, the average cell diameter increases and the deviation from cell density measurement occurred. However, the correlation with the calculated biomass volume is maintained to the end of the cultivation run. This is as expected, because the capacitance is proportional to the volume covert by viable cell membranes. This online measurement of the biomass (as percentage of the volume) shows every small effect of biomass change during the cultivation process, e.g. each dilution due to additional feed medium. Furthermore, these effects could be verified with the offline reference measurements, involving additional sampling.

In conclusion, these results show excellent performance of the fully integrated online viable biomass measurement in SU cultivation vessels and equipment.

References

Parameter setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biostat® RM 50L with Flexsafe® 50 L optical bag</td>
<td></td>
</tr>
<tr>
<td>pH-set point</td>
<td>7.15 (controlled by CO2 headspace)</td>
</tr>
<tr>
<td>dO-set point</td>
<td>60 %sat.</td>
</tr>
<tr>
<td>dO control</td>
<td>Multi stage cascade comprising N2, Air, O2 - gassing</td>
</tr>
<tr>
<td>Temperature set point</td>
<td>36.8 °C</td>
</tr>
<tr>
<td>Agitation (rpm)</td>
<td>25 @ 10° rocking angle</td>
</tr>
</tbody>
</table>

Rocking filter
The rocking motion of the Biostat® RM causes signal fluctuations as the liquid level covering the sensor disc varies. At low working volumes, the sensor is not covered with medium during a certain period of rocking. This results in false measurements which have to be filtered out. Figure 3 shows the impact of the rocking filter software as it is turned on and off on the local controller.

Cell line, Medium and Process Strategy
For the fed-batch process the cell line CHO DG44 (Cellca, Laupheim, Germany) secreting human IgG1 was used. SMDS medium (Cellca) was prepared for the seed train and PM5 medium (Cellca) as a basal medium for the fed-batch culture. The feeding strategy comprised of three different feeds; A, B and 40% concentrated glucose. After a 3-day batch phase, an 8 day fed-batch phase started. From day 11, the discontinuous bolus feed comprised of three different feeds; A, B and 40% concentrated glucose. After a 3-day batch phase, an 8 day fed-batch phase started. From day 11, the discontinuous bolus feed medium (Cellca) as a basal medium for the fed-batch culture. The feeding strategy comprised of three different feeds; A, B and 40% concentrated glucose. After a 3-day batch phase, an 8 day fed-batch phase started. From day 11, the discontinuous bolus feed medium (Cellca) as a basal medium for the fed-batch culture. The feeding strategy comprised of three different feeds; A, B and 40% concentrated glucose. After a 3-day batch phase, an 8 day fed-batch phase started. From day 11, the discontinuous bolus feed medium (Cellca) as a basal medium for the fed-batch culture. The feeding strategy comprised of three different feeds; A, B and 40% concentrated glucose. After a 3-day batch phase, an 8 day fed-batch phase started. From day 11, the discontinuous bolus feed medium (Cellca) as a basal medium for the fed-batch culture. The feeding strategy comprised of three different feeds; A, B and 40% concentrated glucose. After a 3-day batch phase, an 8 day fed-batch phase started. From day 11, the discontinuous bolus feed

Bioreactor setup

| Biostat® RM 50L with Flexsafe® 50 L optical bag |
| Gassing principle: Overlay |
Sensors	Single use optical DO and pH patches, temperature, BioPAT® ViaMass
Working volume	25 L
Initial volume	10 L

Contact: Dan Kocpe, PAT IT Automation, Sartorius Stedim Biotech
dan.kope@sartorius.com