5-23-2016

Characterization of fuel segregation in a fluidized bed by magnetic particle tracking

David Pallarès
Dept. of Energy and Environment, Chalmers University of Technology, Sweden, david.pallares@chalmers.se

Anna Köhler
Dept. of Energy and Environment, Chalmers University of Technology, Sweden

Alexander Rasch
Dept. of Energy and Environment, Chalmers University of Technology, Sweden

Filip Johnsson
Dept. of Energy and Environment, Chalmers University of Technology, Sweden

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv

Part of the [Chemical Engineering Commons](http://dc.engconfintl.org/fluidization_xv/46)

Recommended Citation

http://dc.engconfintl.org/fluidization_xv/46

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Experimental characterization of axial fuel mixing in fluidized beds by magnetic particle tracking

Anna Köhler, Alexander Rasch, David Pallarès and Filip Johnsson

Department of Energy and Environment
Chalmers University of Technology, Sweden

May 23rd, 2016
Fluidization XV – Fairmont Le Chateau Montebello
Quebec, Canada
Background

• Mixing of large particles in FB

- Lateral mixing
- Axial mixing

Residence time
Mass/Heat Transfer

Process performance
Efficiency

• Combustion (incl. CLC, OCAC), gasification
• Industry (chemical, petrol, metal, pharma)
Background

- Mixing of large particles in FB
- Axial mixing
 - Bubbles in dense bed
 - Particle properties
 - Operational conditions
Aim

- Investigate axial mixing of single large tracer
 - Operational conditions \((H_0, u_0-u_{mf}, \Delta P_{Distributor})\)
 - 3 tracer densities

Method

- Magnetic particle tracking
 - 3-dimensional tracking
- Fluid-dynamical scaling
 - Relevant for industrial scale
 - Resembling hot conditions
Theory

• Axial mixing induced by bubbles
• Segregation

• Biomass fuel
 • Light particles
 • Large particles
Experimental setup

- **Fluid-dynamic scaling**

\[
\frac{U_0^2}{gD} \quad \frac{\rho_p}{\rho_f} \quad \frac{\rho_p U_0 d_p}{\mu_f} \quad \frac{\rho_f U_0 D}{\mu_f} \quad \frac{L}{D}
\]

Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Hot model</th>
<th>Cold model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>800</td>
<td>20</td>
</tr>
<tr>
<td>Bed dimensions</td>
<td>m × m</td>
<td>0.74 × 0.74</td>
<td>0.17 × 0.17</td>
</tr>
<tr>
<td>Bed height</td>
<td>m</td>
<td>0.18 / 0.305</td>
<td>0.04 / 0.07</td>
</tr>
<tr>
<td>Superficial velocity</td>
<td>m/s</td>
<td>0.01 – 0.5</td>
<td>0.006 – 0.236</td>
</tr>
<tr>
<td>Bed material density</td>
<td>kg/m³</td>
<td>2 600</td>
<td>8 900</td>
</tr>
<tr>
<td>Bed material size</td>
<td>µm</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td>Tracer size</td>
<td>mm</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>Biochar density</td>
<td>kg/m³</td>
<td>350</td>
<td>1 470</td>
</tr>
<tr>
<td>Biomass density</td>
<td>kg/m³</td>
<td>800</td>
<td>2 980</td>
</tr>
<tr>
<td>Emulsion density</td>
<td>kg/m³</td>
<td>1 230</td>
<td>4 320</td>
</tr>
</tbody>
</table>
Experimental setup

- 3D magnetic particle tracking
 - Spatial resolution: \(\sim 1 \text{ mm} \)
 - Temporal accuracy: \(\sim 30 \text{ Hz} \)

- Tracer
 - Permanent magnet
 - Spherical, const. diameter
Results

- Axial tracer location
Results

Flotsam

Transient

Stationary

Time spent on and above dense bed surface $F_{fb} [%]$

Excess velocity, $u_0 - u_{mf} [m/s]$

- Biochar
- Biomass
- Emulsion
Results

- u_{rise} for $u_0 - u_{mf} = 0.19$ m/s
- $|u_{\text{sink}}|$ for $u_0 - u_{mf} = 0.19$ m/s
- u_{rise} for $u_0 - u_{mf} = 0.43$ m/s
- $|u_{\text{sink}}|$ for $u_0 - u_{mf} = 0.43$ m/s
Results

- This work (upscaled)
- Rees et al. (3D labscale)
- Nienow et al. (3D labscale)
- Soria-Verdugo et al. (2D labscale)
- Lim et al. (2D labscale)
- Fotovat et al. (3D labscale)
- Stein et al. (3D labscale)
Conclusions

• Enhanced axial mixing
 • Bed height ↑
 • Fluidization velocity ↑
 • Tracer density ↑
 • $\Delta P_{\text{Distributor}}$ –

• 3 mixing regimes with u_0-u_{mf} ↑
 1) Flotsam. 2) Transient. 3) Stationary.

• Tracers up-/downward velocities
 • Cold lab-scale ↔ fluid-dynamically down-scaled