Ionic liquid based extraction of lipids from micro-algae

Lars Rehmann

Western University

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv

Part of the Chemical Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
IONIC LIQUID BASED EXTRACTION OF LIPIDS FROM MICRO-ALGAE

Xiaofei Tian, Malihe Mehdizadeh Allaf, Valerie Orr and Lars Rehmann

Department of Chemical and Biochemical Engineering
Western University
London, ON, Canada

June 14 2013
Microalgae

- High lipid content
- Possible sources for biodiesel
- Can grow on CO$_2$
- Lipids inside the cell
- Cell disruption and lipid recovery necessary
Ionic Liquid Based Biomass Fractionation

• Ionic liquids: Liquids made entirely of ions
• For room temperature ILs typically bulky cation
• ‘Interesting’ solvent properties
 – Some can dissolve biomass
 – Some dissolve cellulose
 – Some dissolve lignin
 – Some destroy enzymes
Ionic Liquids - Structures

Cations

\[\begin{align*}
&\text{N}^+ \\
&\text{N}^+ \end{align*} \]

Anions

\[\begin{align*}
&\text{Cl}^- \\
&\text{Br}^- \\
&\text{NO}_3^- \\
&\text{SO}_4^{2-} \\
&\text{F}^- \\
&\text{SO}_3^{2-} \\
&\text{SO}_3^{2-} \\
&\text{SO}_3^{2-} \end{align*} \]
Enzyme Stability in Ionic Liquids

Green Chem., 2012, 14, 725–733
Ionic Liquids and Microalgae?

- Screen for ionic liquid to dissolve carbohydrates and no lipids
- Dissolve cell-wall of algae in ionic liquid
- Recover lipids as separate liquid phase
- Recover proteins as insolubles
- Recover carbohydrates after addition of anti-solvent (water)
Ionic Liquid Based Lipid Extraction

1. Ultrasonic pretreatment
2. Mixing by vortex, no pretreatment
3. Cooling down
4. Water batch at 95°C for 3hrs
5. Evaporation and concentration
6. Lipids for esterification
7. Organic layer
8. Water-induced precipitation
9. Solid layer
10. Proteins and cell-wall residuals for enzymatic hydrolysis
Heterotrophic Algae Growth

![Graph showing the change in OD, CO2, and pO2 over cultivation time.]

- OD Probe [AU]
- CO2 [%]
- pO2 [%]
Heterotrophic Algae Growth
Speed

Training, genetic makeup + human growth hormone...
Effect of Plant Hormones on the Growth of Microalgae

• Epibrassinolide
 – Enhance growth rate
Lipid Extraction

<table>
<thead>
<tr>
<th>OESs</th>
<th>AMIMCl</th>
<th>70%AMIMCl+30%DMSO (w/w)</th>
<th>50%AMIMCl+50%DMSO (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrasonic pre-treatment</td>
<td>RUN 1</td>
<td>RUN 3</td>
<td>RUN 5</td>
</tr>
<tr>
<td>Non pre-treatment</td>
<td>RUN 2</td>
<td>RUN 4</td>
<td>RUN 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fraction</th>
<th>RUN1</th>
<th>RUN2</th>
<th>RUN3</th>
<th>RUN4</th>
<th>RUN5</th>
<th>RUN6</th>
<th>Folch</th>
<th>Algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid (%)</td>
<td>2.91</td>
<td>10.93</td>
<td>7.11</td>
<td>7.98</td>
<td>5.18</td>
<td>6.76</td>
<td>4.04</td>
<td>-</td>
</tr>
<tr>
<td>Glucose (%)</td>
<td>-</td>
<td>1.29</td>
<td>1.05</td>
<td>1.17</td>
<td>1.07</td>
<td>2.20</td>
<td>2.00</td>
<td>13.49</td>
</tr>
<tr>
<td>FAME</td>
<td>RUN1 %</td>
<td>RUN2 %</td>
<td>RUN3 %</td>
<td>RUN4 %</td>
<td>RUN5 %</td>
<td>RUN6 %</td>
<td>Folch %</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>C4:0</td>
<td>1.34</td>
<td>2.35</td>
<td>5.32</td>
<td>5.77</td>
<td>6.33</td>
<td>6.47</td>
<td>4.66</td>
<td></td>
</tr>
<tr>
<td>C16:0</td>
<td>17.92</td>
<td>29.35</td>
<td>28.11</td>
<td>27.84</td>
<td>27.5</td>
<td>28.04</td>
<td>29.22</td>
<td></td>
</tr>
<tr>
<td>C18:2n6c</td>
<td>15.63</td>
<td>24.64</td>
<td>24.62</td>
<td>25.1</td>
<td>24.87</td>
<td>24.5</td>
<td>24.82</td>
<td></td>
</tr>
<tr>
<td>C18:1n9/C18:2n6t/C18:3n3</td>
<td>20.57</td>
<td>32.55</td>
<td>31.55</td>
<td>32.06</td>
<td>31.85</td>
<td>31.2</td>
<td>34.44</td>
<td></td>
</tr>
<tr>
<td>C18:0</td>
<td>2.08</td>
<td>4.05</td>
<td>3.38</td>
<td>3.07</td>
<td>3.06</td>
<td>3.26</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>C22:6n3</td>
<td>7.87</td>
<td>2.82</td>
<td>1.63</td>
<td>1.71</td>
<td>1.63</td>
<td>1.54</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Microalgae can be fractioned using ionic liquids
- Majority of lipids can be recovered
- Carbohydrates can be recovered and hydrolyzed
- Drying step is necessary
Ongoing and Future Work

- Developing process for wet biomass
- Recycling the ionic liquid
- Extracting lipids from different algae strains
- Evaluating different ionic liquids
- Converting carbohydrates to ethanol and butanol
Thank You!