Development of a scale down toolbox for perfusion process development

Jean-Marc Bielser

Merck KGaA, Switzerland, jean-marc.bielser@merckgroup.com

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_iii

Part of the Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Integrated Continuous Biomanufacturing III by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
SCALE-DOWN TOOLBOX FOR

PERFUSION PROCESS DEVELOPMENT

Jean-Marc Bielser¹², Jakub Domaradzki¹, Jonathan Souquet¹, Massimo Morbidelli², Hervé Broly¹

¹Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Switzerland
²Institute of Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland

The good, the bad and the ugly... clone in perfusion

You mean you can use scale down semi-continuous system to assess the performance of a perfusion process? Yes, I compared my results with a push-to-low² approach using a lab-scale perfusion bioreactor!

Figure 1: Viable cell density of the 4 clones in (A) fed-batch bioreactors (B) semi-continuous shake tubes (C) perfusion bioreactors and (D) on-line capacitance signal used to increment the biomass set-point (SP) progressively (SP 1 to 4)

He is right, from the semi-continuous experiment it is possible to

1. Predict CSPRₘᵢₙ
2. Estimate volumetric productivities
3. Obtain stable operation was achieved using the capacitance signal
4. Impact on growth and productivity

Figure 2: CSPRₘᵢₙ calculated at SP4 for perfusion and at the VCDₘᵢₙ for ST (n=2) and DWP (n=6)

Figure 3: Bioreactor volumetric productivity in perfusion, semi-continuous and fed-batch (increased by respectively 4.1, 3.6, 5.6 and 5.1 fold in perfusion compared to fed-batch)

Figure 4: Growth and productivity in perfusion (A) Biomass (B) Bleed fraction (C) mAb concentration and (D) Specific productivity
