Numerical Simulation of 3-D free convection in porous media due to combined surface forced convection and internal heat generation

Kevin Anderson
California State Polytechnic University - Pomona

Maryann Shafahi
California State Polytechnic University - Pomona

Shawn McGann
California State Polytechnic University - Pomona

Watit Pakdee
Thamasat University

Follow this and additional works at: http://dc.engconfintl.org/porous_media_V

Part of the [Materials Science and Engineering Commons](http://ecidigitals.org/)

Recommended Citation

Kevin Anderson, Maryann Shafahi, Shawn McGann, and Watit Pakdee, "Numerical Simulation of 3-D free convection in porous media due to combined surface forced convection and internal heat generation" in '5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry’, Prof. Kambiz Vafai, University of California, Riverside; Prof. Adrian Bejan, Duke University; Prof. Akira Nakayama, Shizuoka University; Prof. Oronzio Manca, Seconda Università degli Studi Napoli Eds, ECI Symposium Series, (2014). http://dc.engconfintl.org/porous_media_V/52
ABSTRACT
A three-dimensional fluid-saturated porous medium model for natural convective flow has been developed, taking into account inertial and viscous forces within the fluid. The model consists of a cube with a top surface partially exposed to a steady, uniform convective heat flux and the entire domain to uniform internal heat generation. The differential equations for the Brinkman-extended Darcy model were formulated and non-dimensionalized, with numerical solutions obtained using the Galerkin finite element method. The results have been validated by comparison with previously published reports. It has been observed that the applied boundary conditions result in a central toroidal vortex driven by buoyancy, which in turn influences the isothermal profile. The shape and intensity of these vortices is significantly affected by a combination of dimensionless parameters such as Rayleigh number, Darcy number, and porosity.

INTRODUCTION
Natural convection in porous media by surface convection and internal heat generation exist in a variety of engineering applications, such as geothermal reservoirs, underground water flow, and solar collectors [1]. The chemical and nuclear industries also have applications, with internal heat generation arising through radioactive decay or exothermic reactions [2,3]. Compost piles have also exhibited similar characteristics, with internal heat generation resulting from microorganisms undergoing exothermic reactions to break down waste [4].

Flow in a porous medium has been studied extensively using a variety of experimental and numerical methods for both internal heat generation [5-10] and surface convection [11-14]. Vishnampet et al. [15] examined natural convection in a two-dimensional porous enclosure using the lattice Boltzmann method. The study consisted of an insulated square enclosure with one side heated to a uniform temperature and the other wall cooled. High porous Rayleigh numbers were examined in order to determine form drag due to the porous media.

Kramer et al. [16] published a study of three-dimensional flow in porous media using the boundary element method to examine the effects of the Rayleigh and Darcy numbers on temperature and velocity profiles. A hot and cold wall was used to generate natural convection using the Brinkman-extended Darcy model coupled with the energy equation using Boussinesq approximation.

Pakdee and Rattanadecho [17] performed analysis on transient natural convection through porous media in a rectangular cavity with a convective surface boundary condition. The geometry consisted of an insulated square cavity with a portion of the top subjected to convective ambient air. The focus was the resulting temperature contours and streamlines for various Rayleigh numbers, Darcy numbers, and convection coefficients. The study concluded that the convective boundary condition resulted in two symmetrical eddies initiated from the buoyancy effect, triggered by a lateral temperature gradient near the top surface. Smaller values of the Darcy number impeded these eddies and larger Rayleigh numbers increased streamline intensities, allowing the flow to penetrate further downward.

In this study, the work of Pakdee and Rattanadecho [7] is extended to include three-dimensional effects inside an insulated cube exposed to partial top layer convection and internal heat generation. The parametric study examines the influence of various Rayleigh numbers, Darcy numbers, and porosity on the flow field and isothermal profiles within an isotropic fluid-saturated porous medium. The Brinkman-extended Darcy model is applied, assuming constant thermal properties and accounting for buoyancy forces using the Boussinesq approximation.
approximation. The differential formulation is discretized and solved using the Galerkin finite element method. The initial and boundary conditions for the geometry depicted in Figure 1 are given as:

\[u = v = w = 0, \quad T = T_0 \quad \text{for} \quad t = 0 \quad (1) \]

\[u = v = w = 0 \quad \text{at} \quad x = y = z = 0 \quad \text{and} \quad x = y = z = H \quad (2) \]

\[\frac{\partial T}{\partial x} = 0 \quad \text{at} \quad x = 0 \quad \text{and} \quad x = H \quad (3) \]

\[\frac{\partial T}{\partial y} = 0 \quad \text{at} \quad y = 0 \quad \text{and} \quad y = H \quad (4) \]

\[\frac{\partial T}{\partial z} = 0 \quad \text{at} \quad z = 0 \quad \text{and} \quad z = H, \quad 0 \leq x \leq L, \quad H-L \leq x \leq H \]

\[0 \leq y \leq L, \quad H-L \leq y \leq D \quad (5) \]

At the top portion of the cube, the exposed wall boundary condition is given as

\[-k \left(\frac{\partial T}{\partial z} \right) = h(T - T_\infty) \quad \text{at} \quad z = H, \quad L \leq x \leq H-L \]

\[L \leq y \leq H-L \quad (6) \]

Figure 1. 3D representation of computational domain and internal heat generation defined by

\[\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{q'''}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \quad (7) \]

at

\[0 \leq x \leq H \]

\[0 \leq y \leq H \]

\[0 \leq z \leq H \]

where \(k \) is the effective thermal conductivity, \(h \) is the convective heat transfer coefficient, \(q''' \) is internal heat.
The governing equations for heat and fluid flow using standard symbols are

Continuity equation

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \tag{8}
\]

x-momentum equation

\[
\begin{aligned}
1 & \frac{\partial u}{\partial t} + \frac{u}{\varepsilon} \frac{\partial u}{\partial x} + \frac{v}{\varepsilon} \frac{\partial u}{\partial y} + \frac{w}{\varepsilon} \frac{\partial u}{\partial z} = \\
- & \frac{1}{\rho_f} \frac{\partial p}{\partial x} + \frac{v}{\varepsilon} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \frac{\mu u}{\rho_f \kappa}
\end{aligned} \tag{9}
\]

y-momentum equation

\[
\begin{aligned}
1 & \frac{\partial v}{\partial t} + \frac{u}{\varepsilon} \frac{\partial v}{\partial x} + \frac{v}{\varepsilon} \frac{\partial v}{\partial y} + \frac{w}{\varepsilon} \frac{\partial v}{\partial z} = \\
- & \frac{1}{\rho_f} \frac{\partial p}{\partial y} + \frac{v}{\varepsilon} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) \frac{\mu v}{\rho_f \kappa}
\end{aligned} \tag{10}
\]

z-momentum equation

\[
\begin{aligned}
1 & \frac{\partial w}{\partial t} + \frac{u}{\varepsilon} \frac{\partial w}{\partial x} + \frac{v}{\varepsilon} \frac{\partial w}{\partial y} + \frac{w}{\varepsilon} \frac{\partial w}{\partial z} = \\
- & \frac{1}{\rho_f} \frac{\partial p}{\partial z} + \frac{v}{\varepsilon} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) \frac{\mu w}{\rho_f \kappa} + g\beta(T - T_\infty)
\end{aligned} \tag{11}
\]

Energy equation

\[
\sigma \frac{\partial T}{\partial t} + \frac{\partial T}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z} \frac{\partial T}{\partial z} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) \tag{12}
\]

where

\[
\sigma = \left[\frac{(\rho c_p)_f}{\varepsilon (pc_p)_f} \right] (1 - \varepsilon) (pc_p)_f \tag{13}
\]

and \(\varepsilon\) is the porosity of the porous medium, \(\nu\) is the kinematic viscosity, \(\rho_f\) is fluid density, \(\kappa\) is the medium permeability, and \(\beta\) is the thermal expansion coefficient. The heat capacity ratio \(\sigma\) of unity is used in the present study. The momentum equations in this form are known as the Brinkman-Extended Darcy model, which accounts for the viscous effects due to the presence of a solid body [19]. Note that when porosity is equal to 1 and removing the Brinkman term along with the Boussinesq approximation, the model reduces to the Navier-Stokes equations.

The variables are non-dimensionalized into the following

\[
X = \frac{x}{H}, \quad Y = \frac{y}{H}, \quad Z = \frac{z}{H}, \quad U = \frac{uH}{\alpha}, \quad V = \frac{vH}{\alpha}, \quad \tau = \frac{\alpha H^2}{\alpha}, \quad \xi = \frac{oH^2}{\alpha}, \quad \Psi = \frac{\psi}{\alpha} \tag{14}
\]

and the following dimensionless numbers

\[
Ra = \frac{g\beta(T_t - T_\infty)H^2}{\nu \alpha}, \quad Pr = \frac{\nu}{\alpha}, \quad Da = \frac{\kappa}{H^2} \tag{15}
\]

where \(\alpha\) is the effective thermal diffusivity, \(\nu\) is kinematic viscosity, \(\beta\) is the coefficient of thermal expansion, \(\xi\) is the vorticity, \(\Psi\) is the stream function, and \(\kappa\) is the medium permeability. The Rayleigh number, \(Ra\) gives the relative magnitude of buoyancy to viscous forces, the Prandtl number, \(Pr\) is the ratio of fluidic to heat diffusivity, while the Darcy number, \(Da\) gives the relationship between the medium’s permeability and length scale. Permeability is defined as the measure of the ability of a porous material to allow fluid to pass through it, while porosity is fraction of the volume of voids over the total volume.

The governing equations can be written in the standard stream-function / vorticity dimensionless form as follows

\[
\frac{\partial^2 \psi}{\partial X^2} + \frac{\partial^2 \psi}{\partial Y^2} + \frac{\partial^2 \psi}{\partial Z^2} = -\xi \tag{16}
\]

\[
\frac{\partial \psi}{\partial X} + U \frac{\partial \psi}{\partial X} + V \frac{\partial \psi}{\partial Y} + W \frac{\partial \psi}{\partial Z} = 0 \tag{17}
\]

\[
\frac{\partial^2 \xi}{\partial X^2} + \frac{\partial^2 \xi}{\partial Y^2} + \frac{\partial^2 \xi}{\partial Z^2} + e^2 Pr Da \left(\frac{\varepsilon}{\partial X} \right) + \xi e^2 Pr Da \tag{18}
\]

NUMERICAL PROCEDURE

Analytical solutions to the partial differential equations (PDE) were obtained using the Galerkin finite element method. Galerkin methods belong to the class of solution methods for PDEs where the solution residue is minimized, giving rise to the well-known weak formulation of problems [20]. However, these nonlinear equations are unstable if discretized using the Galerkin finite element method. In order to obtain numerical
solutions, streamline diffusion is used for these strongly coupled systems of equations [21].

Table 1. Grid independent study

<table>
<thead>
<tr>
<th>Number of Elements</th>
<th>Maximum Non-dimensional Velocity</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,000</td>
<td>1.665×10^{-3}</td>
<td>-</td>
</tr>
<tr>
<td>55,000</td>
<td>1.653×10^{-3}</td>
<td>0.68%</td>
</tr>
<tr>
<td>336,000</td>
<td>1.660×10^{-3}</td>
<td>0.38%</td>
</tr>
</tbody>
</table>

A uniform grid resolution of 55,000 tetrahedral elements was found to be sufficient for all computations and time steps. Finer, more computationally expensive grids did not result in significant change as shown in Table 2. Thermal properties of the porous medium were assumed to be constant, with an effective thermal conductivity of 10 W/m-K and a Prandtl number of unity for all studies.

MODEL VALIDATION

The present study was validated by comparing with the results of Nithiarasu et al [18] for natural convection in a rectangular fluid saturated porous cavity. The cavity consists of two opposing isothermal walls and the rest insulated. The original study is performed in two-dimensions, but the validation study is performed in three-dimensions assuming uniform properties and boundary conditions in the added dimension. The results are seen to be in agreement as shown in Table 2.

Table 2. Comparison of results with Nithiarasu [18]

<table>
<thead>
<tr>
<th>Study</th>
<th>ε</th>
<th>Ra</th>
<th>Da</th>
<th>V_{max}</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>0.6</td>
<td>10^4</td>
<td>10^{-2}</td>
<td>9.28</td>
<td>0.64%</td>
</tr>
<tr>
<td>Nithiarasu et al [18]</td>
<td></td>
<td></td>
<td></td>
<td>9.34</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

All numerical results are taken at non-dimensionalized time sufficient to reach a steady state solution, $\tau = 0.2475$. This agrees with the similar study done by Pakdee and Rattanadecho [17]. The initial non-dimensionalized temperature value for the domain is set to zero, with a constant convective surface boundary condition of 60 W/m²-K on the partially exposed top surface with an external temperature of 1. A uniform isotropic internal heat source of 1,000 W/m² is also applied to all studies. Parametric analysis with the controlling parameters of Darcy number, Da, Rayleigh number, Ra, and porosity, ε are conducted to assess their influence on streamlines, velocity profiles, and isothermal contours. The coupled boundary conditions are characterized by the formation of a global toroidal vortex, also known as a vortex ring. The vortex formation is a result of buoyancy, induced by thermal gradients disseminated from the partial top surface boundary conditions and amplified by the internal heat generation. The non-uniform thermal gradients at the top of the cube cause the heated portions of the fluid to become lighter and expand laterally. This fluid then contacts the cube’s vertical boundaries and flows downward along the four walls. Simultaneously, the internal heat source generates a central thermal concentration, inciting buoyancy forces contributing to the partial surface convection gradient. This fluid motion illustrates that the buoyancy forces are able to overcome the retarding effects of viscous forces.

Figure 3 displays the streamlines and velocity magnitude, illustrating the sensitivity to Darcy number. The larger Darcy number corresponds to higher permeability, resulting in higher velocity and more convective mixing in the interior. The smaller Darcy number’s lower permeability generates a force opposing the flow, which in turn suppresses the the driving thermal currents.

In Figure 4, isothermal contours are plotted at different Rayleigh numbers for fixed porosity and Darcy number. The Rayleigh number gives the ratio of buoyancy forces to change in viscous forces. Higher Rayleigh numbers allow the flow field and thermal gradient to penetrate deeper vertically, elongating the streamlines due to the domination of buoyancy forces. This also results in the decreased diameter and elongation of the toroidal vortex, as the two counter-rotating vortices move vertically and laterally toward the bottom and center of the cube, respectively. At low Rayleigh numbers, the isotherms indicate the predominance of conduction heat transfer,
while convective effects dominate at $Ra > 10^4$ [18]. However, even at high Rayleigh numbers, conduction is still dominant near the partial top surface boundary condition. This is evident by the close proximity of the isothermal contours, indicating a larger thermal gradient and therefore higher local heat transfer coefficient.

Porosity ϵ, also known as the void fraction, is the measure of the empty space in a material defined by the ratio of the volume of voids to the total volume. Figure 5 shows the velocity magnitudes looking down the vertical centerline of the cube for $\epsilon = 0.4$ and $\epsilon = 0.8$ with constant Rayleigh and Darcy numbers. The results of Figure 5 show that velocity magnitudes are larger with higher porosity. Higher porosity media correspond to higher permeability, which allows greater flow velocity due to smaller boundary and inertial effects [22].

![Figure 5. Velocity magnitudes along central vertical axis for various porosities with $Da = 10^{-3}$ and $Ra = 10^4$.](image)

The behavior shown in Figure 6 reinforces the smaller Darcy number’s flow impedance, highlighted in the lower portion where the temperature differences are very small and viscous effects are strong. As the Darcy number approaches zero, convective heat transfer is significantly reduced while conductive heat transfer dominates. The isothermal contours in Figure 7 illustrate the influence of higher velocities, where porosities $\epsilon = 0.4$ and $\epsilon = 0.8$ are overlaid.

![Figure 6. Isothermal contours at $y = 0.5$ for $\epsilon = 0.8$, $Ra = 10^3 Da = 10^2$ (left) and at $y = 0.5$ for $\epsilon = 0.8$, $Ra = 10^6 Da = 10^3$ (right).](image)

![Figure 7. Isothermal contours for $Da = 10^{-3}$, $Ra = 10^4$, and $\epsilon = 0.4$ and $\epsilon = 0.8$.](image)

For comparison purposes, in Figure 7, the values for Darcy and Rayleigh number are identical to those used in Figure 5. The isothermal contours of Figure 7 are more condensed for larger porosity. This agrees with previous studies that as porosity increases the temperature variations become steeper, increasing the heat transfer rate as well as the amount of convective heat transfer [23].

CONCLUSIONS
A parametric study for natural convection inside a fluid-saturated isotropic porous medium with partial top surface convection and internal heat generation has been performed. The Rayleigh number, Darcy number, and porosity were varied to determine their influence on the velocity field and isothermal profiles. The Brinkman-extented Darcy model was implemented and solved using the Galerkin finite element method and validated using a benchmark against previously published work. It was determined that the boundary conditions resulted in the formation of a toroidal vortex due to buoyancy, evident in the three-dimensional streamlines and as two symmetric counter-rotating vortices in the central x and y planes. Higher Rayleigh numbers resulted in elongation of these vortices, allowing the isothermal contours to penetrate deeper into the domain. Larger Darcy numbers lead to higher velocities and more convective mixing as higher permeability allowed the thermal gradient to penetrate the porous medium. Higher porosities were found to increase the thermal gradient due to a larger heat transfer coefficient resulting from increased convection.
REFERENCES