Development and application of screening scale bioreactor systems for very high cell density perfusion of mammalian cells

Caijuan Zhan
KTH - Cell Technology Group (CETEG), Sweden

Hubert Schwarz
KTH - Cell Technology Group (CETEG), Sweden

Magnus Lundqvist
KTH - Cell Technology Group (CETEG), Sweden

Atefeh Shokri
KTH - Cell Technology Group (CETEG), Sweden

Ray Field
BioPharmaceutical Development, MedImmune, Cambridge, UK.

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_iii

Part of the Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Integrated Continuous Biomanufacturing III by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Caijuan Zhan, Hubert Schwarz, Magnus Lundqvist, Atefeh Shokri, Ray Field, Richard Turner, Mathias Uhlén, Johan Rockberg, and Veronique Chotteau

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/biomanufact_iii/52
Development and application of screening scale bioreactor systems for very high cell density perfusion of mammalian cells

Perfusion culture in mini-bioreactors

Challenges for mini-bioreactors
- Cell separation device
- Optimization of oxygenation
- Hydrodynamic optimization
- Feed medium optimization
- Lower lactate accumulation

Feed medium optimization
Lactate affect the cell viability and the cell growth
Gradually lower glucose conc. in feed medium → g_m and g_m decreased
Nutrient feeding optimization

Hydrodynamic optimization
Shear stress in hollow fiber

Cell separation device
Flow of cell broth in one direction and driven by a pump
Flow in alternating direction by a diaphragm pump

Perfusion with tangential flow filtration in mini-bioreactor
- Very high cell density ≥ 80 x 10^6 cells/mL
- Viability ≥ 91%
- Volumetric productivity increasing with cell density even at low CSPR ≥ 3 g/L/day
- Cell specific IgG productivity 20-35 pg/cell/day
- Similar cell metabolism
- Similar EPO productivity

Acknowledgements
This work was supported by the Knut and Alice Wallenberg Foundation, Sweden, and by Medimmune, AstraZeneca, UK. We thank Thermo Fisher Scientific, USA, for kindly providing PM8 prototype medium and Irvine Scientific, USA, for advice, as well as SelexisJSR, Switzerland, for the CHO-M cell line.