Wet air oxidation for industrial wastewater and sludge treatment: first results of a new research program in Quebec

Jean-François Vermette
Centre de transfert technologique en écologie industrielle, jeanfrancois.vermette@cttei.com

Sophie Girard
Centre de transfert technologique en écologie industrielle

Patrick Desjardins
Cégep de Sorel-Tracy

Follow this and additional works at: http://dc.engconfintl.org/gpe2016
Part of the Chemical Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in 5th International Congress on Green Process Engineering (GPE 2016) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
WET AIR OXIDATION FOR
INDUSTRIAL WASTEWATER AND SLUDGE TREATMENT:
FIRST RESULTS OF A NEW RESEARCH PROGRAM IN QUÉBEC

Jean-François VERMETTE,
Biophysicist, M. Sc. – Project leader
Technology Transfer Center

Applied research on:

- Industrial waste valorization
- Clean processes
- Industrial symbiosis
WET AIR OXIDATION PROCESS (WAO)

- Subcritical water enriched with air or oxygen (≈150–350 °C, ≈3–20 MPa)
- Oxygen reacts with organic compounds → propagation of radicals: R•, OH•, HO2•, ROO• → Exothermic oxidation of organic compounds mostly into CO2, H2O, NH3, SO42-, PO43-
- Industrial opportunities for WAO: wastewater too toxic or too concentrated for biological processes, and too diluted for suitable incineration (> 80 % H2O)
- Better energy output than incineration (for sludge or wastewater)
- Cleaner gas emissions: no NOX, dioxins or furans
- Better efficiency and faster treatment than other advanced oxidation processes (AOPs) for highly concentrated waste (>10 g/L DCO)
- Economically-competitive and environmentally-friendly process industrialised in Europe, but still non-existent in the province of Québec.
WAO AT CTTÉI
APPLIED RESEARCH AND TECHNOLOGY TRANSFER
MODE WASTEWATER

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Molecular Formula</th>
<th>Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene glycol</td>
<td>C₃H₈O₂</td>
<td>76 g/mol</td>
</tr>
<tr>
<td>Ethoxylated alcools</td>
<td>C₂₂H₄₆O₇</td>
<td>422 g/mol</td>
</tr>
<tr>
<td>Tripropylene glycol methyl ether</td>
<td>C₁₀H₂₂O₄</td>
<td>206 g/mol</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>C₆H₁₅NO₃</td>
<td>149 g/mol</td>
</tr>
<tr>
<td>Dodecylbenzene sulfonic acid</td>
<td>C₁₈H₂₉SO₃Na</td>
<td>348 g/mol</td>
</tr>
<tr>
<td>Polyoxyethylene monooleyl ether phosphate</td>
<td>C₂₈H₅₉O₁₀P</td>
<td>587 g/mol</td>
</tr>
</tbody>
</table>

- Industrial reality: heterogeneous mix of products.
- Modelling a precise oxidation mechanism becomes very difficult (numerous degradation by-products, interaction and recombination).
- Necessity of case-by-case lab studies and experimental design.
- A model wastewater was synthetised and studied:
 - Mix of 6 common chemicals used by our industrial partners (coolants, lubricants, solvants, surfactants)
 - COD: 10 – 60 g/L (range studied)
 - pH: 8
WAO OF MODEL WASTEWATER - EFFECT OF TEMPERATURE

Initial COD: 10 g/L
Oxydant: Air, 1,8 x required amount for complete oxidation
P = 160 bars (180 bars for essais at 320°C and 335°C)
Stirring 1000 rpm

H₃C

O

OH

°C

°C

°C

°C

°C
WAO OF MODEL WASTEWATER – EFFECT OF COPPER CATALYST

Initial COD: 10 g/L
Oxidant: Air, 1.8 x required amount for complete oxidation
P = 160 bars
Stirring 1000 rpm
AERATED LAGOON SLUDGES

- Sewage sludges are treated by WAO at industrial scale in Europe (ex.: Brussels, Aix-en-Provence, Trucazzanno, etc.)

- Aerated lagoons are common in Québec (require large surface areas). No study was found on WAO of lagoon sludge.

- In Sorel-Tracy, Québec: 20,000 tons of sludges to dispose. The cost of dewatering + landfilling would be prohibitive.
WAO - AERATED LAGOON SLUDGES

Initial diluted sludges: 5200 mg/L

COD of sludge samples (mg/L) vs. Reaction time (min) for different temperatures and pressures:
- 210°C - 100 bars
- 210°C - 175 bars
- 240°C - 100 bars
- 240°C - 175 bars
- 270°C - 100 bars
- 270°C - 175 bars
- 300°C - 100 bars
- 300°C - 175 bars

Note: The graph shows the decrease in COD over time under various conditions.
WAO - AERATED LAGOON SLUDGES

Example of Sorel-Tracy:
Before WAO: 20 000 tons of sludges
After: 1 400 tons of solid (> 99% inorganic) + biodegradable liquid

<table>
<thead>
<tr>
<th></th>
<th>Before WAO (sludge)</th>
<th>After WAO 300 °C (liquid phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>52 g/L</td>
<td>10 g/L</td>
</tr>
<tr>
<td>BOD$_5$</td>
<td>1,0 g/L</td>
<td>6,3 g/L</td>
</tr>
<tr>
<td>Biodegradability index (BOD$_5$/COD)</td>
<td>0,02</td>
<td>0,63</td>
</tr>
</tbody>
</table>
CONCLUSION AND FUTURE WORK

• Interesting opportunities for WAO and other green processes in Québec.

• Model wastewater: temperature has a major impact between 240 and 300 °C. Homogeneous copper catalyst shows good activity.

• Lagoon sludges can be treated effectively with ≈ 85% COD removal on liquid phase and > 99% on solids.

• Future work:
 – Economic analysis: CAPEX/OPEX of studied scenarios
 – New lab equipment to reach supercritical conditions (> 374 °C, 220 bars)
 – Study WAO for hospital wastewater and micropollutants

• Always seeking new industrial and academic partners!
QUESTIONS ?
COMMENTS ?