Application of microwave energy to consolidate titanium powder

R. Sadangi
Armament Research

Follow this and additional works at: http://dc.engconfintl.org/efa_sintering

Recommended Citation

This Abstract is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Electric Field Assisted Sintering and Related Phenomena Far From Equilibrium by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Application of Microwave Energy to Consolidate Titanium Powder

R. Sadangi1, B. Y. Rock2, T. F. Zahrah3, and M. A. Imam4

1Armament Research, Development & Engineering Center, Picatinny, NJ, USA.
2Naval Research Laboratory, Plasma Physics Division, Washington DC, USA
3MATSYS, Inc., 45490 Ruritan Circle, Sterling, Virginia, USA
4George Washington University, School of Eng. & App. Sci., Washington DC, USA

Abstract:

Titanium (Ti) has many attractive attributes for military, industrial, and aerospace applications including high specific strength, no magnetic signature, and excellent corrosion resistance. However, its use has been limited by high processing costs. Powder metallurgy is a cost effective way to fabricate high-quality, near-net-shape products. Consolidation of titanium powder compacts is performed in vacuum furnace and the overall processing cycle times can vary from hours to days. Microwave sintering of titanium is a recent development in powder metallurgy of titanium. Microwave sintering is energy efficient compared to conventional sintering methods due to direct microwave heating of the titanium powder compacts via in-depth energy deposition augmented by hybrid heating in a ceramic casket. The in-depth heating enables very rapid processing (cycle times of potentially less than 10 minutes) and ensures that starting fine grain structure is retained in the final product. Microwave sintered titanium alloys display improved mechanical properties and opens up the possibility of superplastic forming. The process can be also used for fabrication of composites, laminates, direct alloying, and functionally graded materials. Evaluations to optimize different parameters for controlling the final density, microstructure, and properties of these materials will be discussed.