Composites on fire at reduced scale: evaluation, characterization and modeling

Serge Bourbigot
Lille University, serge.bourbigot@ensc-lille.fr

Fabienne Samyn
Lille University

Sophie Duquesne
Lille University

Follow this and additional works at: http://dc.engconfintl.org/composites_all

Part of the Materials Science and Engineering Commons

Recommended Citation
Serge Bourbigot, Fabienne Samyn, and Sophie Duquesne, "Composites on fire at reduced scale: evaluation, characterization and modeling" in "Composites at Lake Louise (CALL 2015)", Dr. Jim Smay, Oklahoma State University, USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/composites_all/66

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Composites at Lake Louise (CALL 2015) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
COMPOSITES ON FIRE AT REDUCED SCALE: EVALUATION, CHARACTERIZATION AND MODELING

Serge BOURBIGOT

R²FIRE®@UMET-UMR/CNRS 8207
Fire protection of composite: why?

CFRP in aircraft structure has introduced potential fire threats:

- engine compartments (fuel leakage can occur)
- fuselage (post-crash fire)

Jet fuel fire: heat flux between 110 and 200 kW/m²
Fire protection of composite: testing?

Fire resistance of fuselage and other parts of aircraft: full scale test or burnthrough test (jet fuel fire at ~186 kW/m²)

- Time consuming
- Expensive
- Slow development

Post-crash fire simulation in full scale indoor at FAA

Burnthrough test (NexGen)
Fire protection of CFRP
Intumescence?

- Formation of heat barrier
- Fire protection of materials?
Silicone-based intumescent coating

Intumescent paint on CFRP: silicone-based coating containing expandable graphite* compared to low intumescing paint

<table>
<thead>
<tr>
<th>Silicone formulation</th>
<th>F1 – High intumescing coating</th>
<th>F2- Low intumescing coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone matrix</td>
<td>56%</td>
<td>56%</td>
</tr>
<tr>
<td>Expandable graphite</td>
<td>25%</td>
<td>-</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>12%</td>
<td>37%</td>
</tr>
<tr>
<td>Clay</td>
<td>7%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Protection by intumescence: 1000µm

Virgin composite

Effective protection with silicone-based paint
Protection by intumescence

Virgin composite

CFRP-F1
Mechanism of protection

- **Heat barrier:** high expansion, low k (0.4 W/m.K@600°C)
- **Structure:** high cohesion thanks to chemical interactions (SiC, Ca-Si)

- **Heat barrier:** low expansion, low k (0.4 W/m.K@600°C)
- **Structure:** cohesive porous structure (highly polymerized Si, Ca-Si)
Dimensionnal analysis: reducing the scale
ISO 2685: goal and test

Pass/fail test for equipment located in fire zone (engine, auxiliary unit):

- Heat flux of 116 kW/m²
- T_{flame} of 1100°C
- Withstanding of the component for 5 min ⇒ fire proof
- Withstanding of the component for 15 min ⇒ fire resistant
Dimensional analysis: numbers

\[\rho C \dot{T} - k \Delta \bar{T} = \frac{q_{av} - q_{ar}}{e_p} \]

\[q_{ar} = h_{ar}(T - T_{amb}) + \varepsilon \sigma (T^4 - T_{amb}^4) \]

\[q_{av} = h_{av}(x, y)(T_g - T) + C(x, y) \sigma (T_f^4 - T^4) - \varepsilon \sigma (T^4 - T_{amb}^4) \]

Dimensionless numbers are determined:

\[\tilde{x} = x/L \quad \tilde{y} = y/L \quad \tilde{t} = t/\tau \quad \tilde{T} = T/T_{amb} \]

\[\frac{\tau_e p \partial \tilde{T}}{\tau} - \left(\frac{e_p}{L} \right)^2 \Delta \tilde{T} = B_{iav} \left(\frac{T_g}{T_{amb}} - \tilde{T} \right) + C N_r \left(\left(\frac{T_f}{T_{amb}} \right)^4 - \tilde{T}^4 \right) - 2\varepsilon N_r (\tilde{T}^4 - 1) - B_{iar} (\tilde{T} - 1) \]

\[B_{iav} = \frac{e_p h_{av}}{k} \quad B_{iar} = \frac{e_p h_{ar}}{k} \]

\[F_{oep} = \frac{\tau}{\tau_{ep}} \quad \tau_{ep} = \frac{\rho C_p e_p^2}{k} \quad N_r = \frac{e_p \sigma T_{amb}^3}{k} \]

Biot numbers linked to the convection on the 2 faces

\[\tau : \text{duration of the experiment} \]

\[L : \text{length of the plate} \]

Fourier, time and radiative numbers
Dimensional analysis: scale reduction

Simulated scenario:
- Scale divided by 3 except sample thickness
- Same heat transfer
- Same duration

Lower temperature field for the small-scale bench
Small scale test: intumescent CFRP

Evaluation of intumescent CFRP

<table>
<thead>
<tr>
<th>Thickness (µm)</th>
<th>Temperature (°C) @15min</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>600</td>
<td>350</td>
</tr>
<tr>
<td>700</td>
<td>300</td>
</tr>
</tbody>
</table>

Efficiency of the fire protection from 250 µm via an intumescent behavior
Summary and Conclusions

- **Similitude**: *scale reduction is not straightforward but correlation can be found simulating scale reduction*

- **Modeling**: *numerical simulation and optimization for the development of small scale bench*

- **Intumescence**: *efficient method to fire protect CFRP for aircraft and building applications*
H2020 ERC Advanced Grant (2.4 millions €):
FireBar-Concept
(Multi-conceptual design of fire barrier: a systemic approach)