A biomanufacturing facility based on continuous processing and single use technology

Jorgen Magnus
Bayern Technology Services, jorgen.magnus@bayer.com

Maike Temming
Bayern Technology Services

Peter Schwan
Bayern Technology Services

Jovana Micovic
Bayern Technology Services

Martin Lobedam
Invite, GmBH

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_i

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Integrated Continuous Biomanufacturing II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Jorgen Magnus, Maike Temming, Peter Schwan, Jovana Micovic, Martin Lobedam, and Stefan Sievers

This conference proceeding is available at ECI Digital Archives: http://dc.engconfintl.org/biomanufact_ii/72
Bayers vision of the Biofacility of the Future is developed within the Mobidik project. A pilot plant with a complete production line of monoclonal antibodies from fermentation to final drug substance has been established. All parts in contact with the product are made in single use technology and the process is run as an integrated, fully continuous process. The process control system and the PAT concept are developed to achieve a high level of automation limiting the need for manual handling to a minimum. Issues related to GMP compliance are being addressed at an early stage. A detailed GMP risk analysis and a concept for product release are being developed.

The pilot plant is used to provide a proof of concept for the process technology and to lay the foundation for building a production plant with a capacity of 150 kg/a. In particular, the pilot plant is used to demonstrate process robustness and GMP readiness. The concept for the production plant is based on the four design criteria; 100% single use equipment, continuous processing, closed processing and “ballroom” production. Compared to traditional facilities this concept is significantly less complex which results in a number of benefits. The engineering, construction, commissioning, qualification and validation of the facility are much faster. Flexibility is achieved through the decoupling of the equipment from the building. The facility is smaller, has reduced investment and production cost as well as reduced energy and water consumption. It should therefore be possible to build the production facility in less than two years for less than 20 million €.