Identifying Hipk1 as a target of Mir-22-3p enhancing recombinant protein production from Hek 293 by using microarray and Htp sirna screen

Sarah Inwood
National Institutes of Health (NIH), USA, sarah.inwood@nih.gov

Eugen Buehler
Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH Rockville MD 20850

Michael Betenbaugh
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA

Madhu Lal
Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH Rockville MD 20850

Joseph Shiloach
Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland 20892

Follow this and additional works at: http://dc.engconfintl.org/ccexvi
Part of the [Engineering Commons](http://dc.engconfintl.org/ccexvi)

Recommended Citation
Identifying HIPK1 as Target of miR-22-3p, Enhancing Recombinant Protein Production From HEK 293 Cells

Sarah Inwooda,b, Eugen Buehlerc, Michael J. Betenbaughb, Madhu Lal-Nagc, Joseph Shiloacha

a Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health. b Department of Chemical and Biomolecular Engineering, Johns Hopkins University. c Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health

Introduction

Mammalian cells are being used for producing proteins and antibodies for therapeutic, biochemical and structural studies. [1] Chinese Hamster Ovary (CHO) cells are commonly used for recombinant protein production but Human Embryonic Kidney (HEK-293) cells have the advantage of human post-translational modification.[2] microRNA (miRNA or miR) are small non-coding RNA that regulate gene expression. [3]

Our previous high throughput screen identified several miRNA, which improve protein production in HEK cells with multiple protein types, from these we decided to concentrate on hsa-mir-22-3p. [4]

Objectives

A. To improve protein expression in HEK 293 cells
B. To identify genes involved with improving protein expression as a result of treatment with the identified hsa-mir-22-3p
C. To create cell lines with improved protein expression

Conclusions

miR-22-3p improves recombinant protein expression
Using microarray analysis along with an siRNA screen, [7] common seed analysis and nCounter analysis can identify genes involved in recombinant protein production
HIPK1 is connected with improving luciferase and GPC3 expression
Validated with siRNA and RT-PCR

Future work

Investigate the mechanism(s) leading to improved protein biogenesis
Create high producing cell line by stable knock-out of top candidate genes
Compare to a high producing cell line with stable over-expressing mir-22

References

Acknowledgement

This research was supported by the Intramural Research Program of the NIH