Orientation dependence of dislocation transmission through twin-boundaries studied by in situ μLaue diffraction

Nataliya Malyar
Max-Planck-Institut, malyar@mpie.de

Nagami Jaya
Max-Planck-Institut

Gerhard Dehm
Max-Planck-Institut

Christoph Kirchlechner
Max-Planck-Institute on Research of Collective Goods

Jean Sebastuen Micha
Grenoble University

Follow this and additional works at: http://dc.engconfintl.org/nanomechtest_v

Part of the [Materials Science and Engineering Commons](https://msarc.org)

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nanomechanical Testing in Materials Research and Development V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Motivation

Dislocation-twin boundary interaction is not entirely understood but gains attention due to the outstanding mechanical performance of nano-twinned materials. Here, we show µLaue compression experiments on a coherent Σ3 (111) twin. The samples are all tested in different crystallographic loading direction with the twin boundary being parallel to the loading direction.

Sample production

-TB production in Bridgman furnace
-Seed crystal A
-Seed crystal B
-Seed crystal B + Bi-crystal
-Size 1 cm
-etching: coarse 15V fine 2V
-radius at the tip ~ few µm
-no taper formation

Meso- & micro sample preparation
-electrochemical etching
-FIB milling
-etching: coarse 16 nA fine 600 pA
-radius at the tip ~ few µm

in situ µLaue compression

-Displacement control mode
-Strain rate 10^{-3} s^{-1}
-Engineering stress strain curve
-Straining analysis (pending)
-Crystallographic orientation
-Point to origin misorientation
-Peak width Estimate the GNDs density
-Straining analysis (pending)

Single crystals

-grain A
-flow stress @ 70MPa no hardening
-Stress-strain curve
-SEM after deformation
-IPF after deformation

-grain B
-primary slip system activated (single slip)
-large slip steps formed
-streaking only at top and bottom
-in the same direction due to instrumental constraints [1]
-no streaking in the center → low amount of GNDs

Samples containing a CTB

-Stress-strain curves
-SEM after deformation
-Laue spot evolution of CTB crystals during compression

1. [123]
-Flow stress comparable to Sxx
-no hardening observed
-only small change in misorientation (≤ 0.5 grad)
-peak shape stays circulaț → low amount of GNDs

2. [325]
-primary slip system activated (single slip)
-large slip steps
-slip steps meet at TB as observed by Imrich [2]

3. [112]
-peak shape stays unaffected during straining up to about 10% independently of the compression direction
-unsolvable low amount of GNDs
-

Conclusions

-Strain-strain behavior, occurrence of the large slip steps and diffraction peak shape during deformation show "single crystal" like behavior
-For all orientations the CTB does not occur as a obstacle for dislocation movement

References

Acknowledgements

MPIE, Düsseldorf, Germany

Nataliya Malyar, Nagamani Jaya B, Jean-Sébastien Micha, Gerhard Dehm, Christoph Kirchlechner

malyar@mpie.de