Monitoring of the hydrodynamic instabilities in conical spouted beds by recurrence plot analysis of pressure fluctuations and acoustic emission signals

Rahmat Sotudeh-Gharebagh
School of Chemical Engineering, College of Engineering, University of Tehran, Iran, sotudeh@ut.ac.ir

Chiya Savari
School of Chemical Engineering, College of Engineering, University of Tehran, Iran

Navid Mostoufi
School of Chemical Engineering, College of Engineering, University of Tehran, Iran

Reza Zarghami
School of Chemical Engineering, College of Engineering, University of Tehran, Iran

Gorkem Kulah
Department of Chemical Engineering, Middle East Technical University, Turkey

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv

Part of the Chemical Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Rahmat Sotudeh-Gharebagh, Chiya Savari, Navid Mostoufi, Reza Zarghami, Gorkem Kulah, and Murat Koksal

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/fluidization_xv/89
Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots

C. Savaria, G. Kulahb, M. Koksalc, R. Sotudeh-Gharebagha, N. Mostoufia, R. Zarghamia

aSchool of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

bDepartment of Chemical Engineering, Middle East Technical University, 06800 Ankara, Turkey

cDepartment of Mechanical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey

Fluidization XV
May 22-27, 2016
Fairmont Le Chateau Montebello
Quebec, Canada
Spouted Beds

- Gas-solid contactors which provide intense contact for large and dense particles.
- In a conical spouted bed, the cylindrical section merely acts as freeboard and the static bed height does not exceed the conical section.
- The main advantages are short gas residence times with narrow distribution and better operating stability.

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
Applications of Spouted Beds

Chemical Processes
- Chemical vapor deposition
- Biomass, waste and scarp tire pyrolysis
- Chlorination of metal oxides
- Combustion or gasification of coal

Physical Processes
- Drying of beans, slurries and pastes
- Granulation of particles
- Coating of particle such as nuclear fuel coating process

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
Coating and granulation processes usually involve the presence of a liquid in the bed. Bed malfunctioning would happen due to stickiness or adhesiveness of the bed material.

Causes of particle adhesions:

1) Addition of solution or sticky material
2) Chemical reaction
3) Particles electrical charge
4) High temperature

Therefore, monitoring of spouted bed parameters is important since the performance of these beds strongly depends on their hydrodynamics.
Detection Methods

Measuring Techniques

Intrusive:

Pressure Fluctuations (PFs): easily measurable, include the effect of various phenomena in the spouted bed, such as individual and bulk movement of particles and formation and movement of agglomerates.

Non-Intrusive:

Acoustic Emission (AE): low cost, reliable measurement technique, applicable to a wide range of process conditions (high pressure and temperature, corrosive).
Experiments

- Full conical spouted bed
- Sugar particles (720 μm)
- Water was sprayed in intervals until de-spouting was observed
- Continuous measuring of PFs and AE signals
- Half column conical spouted bed
- Photography of half bed to visualize of flow patterns
Construction of RP

Conventional RP or thresholded RP (TRP)

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
Recurrence Plot (RP) Definition

- **A two-dimensional square matrix**

\[R_{i,j}(\varepsilon) = \Theta(\varepsilon - \|\vec{x}_i - \vec{x}_j\|) \quad i, j = 1, \ldots, N \]

\[R_{i,j} = \begin{cases} 1: \vec{x}_i \approx \vec{x}_j \\ 0: \vec{x}_i \neq \vec{x}_j \end{cases} \quad i, j = 1, \ldots, N \]
RPs of Different Systems

Periodic System

Random System

Lorenz System

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
Unthresholded RP (UTRP)

This type of recurrence plot is defined based on the distance matrix, $D_{i,j} = \| \vec{x}_i - \vec{x}_j \|$.

UTRPs generally appear as color maps and eliminate the need to determine radius threshold (ε).

UTRP patterns contain more information than the TRP but this type of RP is difficult to quantify.

The UTRPs are used for visual inspection of RPs whereas the TRPs were applied for recurrence quantification analysis.
Recurrence Quantification Analysis (RQA)

Several recurrence variables have been defined as complexity measures based on diagonal line structuring in TRPs.

The length of the longest diagonal line in the TRP, excluding the main diagonal line, is a very important recurrence variable.

Its inverse is related to the Lyapunov exponents.

Positive Lyapunov exponents hint the rate at which trajectories diverge.
Reconstructed Attractors

PFs

AE

Dry Bed

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
Reconstructed Attractors

PFs

AE

after 0.5 mL water injection

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
Reconstructed Attractors

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots

PFs

AE

after 1.5 mL water injection
UTRPs

PFs

AE

Dry Bed

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
UTRPs

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots

after 0.5 mL water injection
UTRPs

17

PFs

AE

after 1.5 mL water injection

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
Zoom of UTRPs

PFs

AE

Dry Bed
Zoom of UTRPs

PFs

AE

after 0.5 mL water injection
Zoom of UTRPs

after 1.5 mL water injection
Maximal length of diagonal line of the TRPs

Monitoring of Liquid Sprayed Conical Spouted Beds by Recurrence Plots
Conclusions

- The recurrence plot method can be used as a powerful technique for monitoring the hydrodynamics of conical spouted beds.
- The reconstructed phase space trajectories of both PFs and AE signals approach to a slim and elongated pattern by injection of water into the bed.
- Changes in the visual appearance of the UTRPs of AE signals are more obvious, even without any quantification analysis.
- Examination of maximum length of diagonal lines of thresholded RPs (TRPs) showed that PFs and AE signals of the bed approach that of a periodic time series with injection of water.
- Hydrodynamic behavior of bulk movement and agglomerates is more deterministic than movement of single particles.
Thank you for your attention