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Thermal protection of metallic components by Thermal Barrier Coatings, TBCs,
is widely used in rocket engines, aircraft industry and gas turbines for power
generation; this technology reduces substrates temperature up to 165°C. Apart
from thermal protection they can also protect against abrasion, oxidation and
corrosion.
This work reports on the mechanical characterization of APS 6-8 wt.% Yttria
Stabilized Zirconia (YSZ) as top layer, bonded by an HVOF NiCoCrAlY layer to a
superalloy substrate (Inconel 625), using micro- and nano-indentation
techniques on test specimens after heat treatment at 1100°C and different
exposure times (0, 200, 400, 600, 800, 1000, and 1700 hours).
The fracture toughness of the ceramic coating was measured trough IF method,
in conjunction with failure statistics, proved to be a powerful tool that helps to
understand microstructural and mechanical evolution of the coating due to
high temperature exposition.

Abstract

• From 0 up to 600 hours of heat treatment, before the formation of the
monoclinic phase, hardness and Young’s modulus of the TC rapidly grew up;
this is explained by the sintering phenomena. Further from the 600 hours,
the hardness continued growing up, but the young’s modulus got to a
steady state due to competition between sintering mechanism and phase
transformations (where sintering tried to augment E and phase
transformation tried to reduce it).

• The fracture toughness decreased with exposition time up to 23% showing a
detriment of the ceramic layer. The Lankford Model gave results similar to
those found in the literature for the 6-8 wt.% YSZ, showing a reliable
method.

• After indentations, the direction in which radial cracks spread was ruled by
the TC microstructure (parallel to the TC/TGO).

• In general K1c data follows the Weibull’s equation. However, between 400
and 600°C, the data do not conform with weibulll´s equation due to their
scatteredness; this can be explained by the fact that the material undergoes
structural transformation that is caused by phase changes, sintering , and
evolution of residual stresses.

• The IF method, in conjunction with failure statistics, has proven to be a
powerful tool for the assessment of the microstructural behavior, showing
the trend of the densification due to sintering.

Conclusions

Time 
(h) m K0

0 9.2 26.0
200 6.4 15.0
400 7.1 11.5
600 7.4 3.2
800 8.6 12.9

1000 8.1 9.9
1700 11.4 5.5

Table 1. Weibull 
parameters at 

different 
exposure times.
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Fig. 3. Hardness, fracture toughness, Weibull and Young’s moduli of TBCs, at 1100ºC at different times.

Results

Fig. 4. Weibull plots for fracture toughness - 𝒍𝒏𝒍𝒏(𝟏/(𝟏−𝑷(𝑲𝟏𝒄))) vs 𝒍𝒏𝑲𝟏𝒄.
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Fig. 1. Schematic of a TBC’s general structure [1].

Materials and Methods
Test specimens, with dimensions of 1.7 x 1.7 cm, were heat treated at 1100°C
during 0, 200, 400, 600, 800, 1000, and 1700 hours respectively, then they were
mounted in phenolic resin, and samples were extracted for metallographic
preparation: Grinding with sand paper Nº 400 and 600 (during 15 min);
polishing with diamond suspension of 12, 6, 3 µm (during 15 min) and 1 µm
(during 60 min), keeping a pressure of 37.5±3.54 KPa.
Nano- and micro-indentation techniques were carried out on the cross-sections
to measure elastic modulus, hardness, and fracture toughness. OM and SEM
microscopy were used to measure the size and shape of the indentations, the
state, evolution, and morphology of the cracks; and the general structural
aspects of the ceramic coating. The fracture toughness (K1C) of the TC was
evaluated with the James Lankford model.
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A method employing Weibull statistics was 
applied to evaluate results from K1C values:

𝑷 𝑲𝟏𝒄 = 𝟏 − 𝒆
−
𝑲𝟏𝒄
𝑲𝟎

𝒎

where m, is the Weibull modulus, and K0

is the characteristic fracture toughness. Fig. 2. Vickers indentation of a heat treated 
sample (1100°C, 1700 h).
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Fig. 7. Cross-section of the TC heat treated sample at 
1100°C during 1700 h.

Fig. 6. Porosity content vs. Exposure time [2].
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Fig. 5. Quantification of tetragonal and cubic phases by Rietveld method [2].
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