Engineering Conferences International ECI Digital Archives

Fluidization XV

Proceedings

5-24-2016

Numerical simulation of hydrogen production by chemical looping reforming in a dual interconnected fluidized bed reactor

Piero Bareschino Dipartimento di Ingegneria, Università degli Studi del Sannio, Italy, piero.bareschino@unisannio.it

Roberto Solimene Istituto di Ricerche sulla Combustione, Consiglio Nazionale delle Ricerche, Italy

Giuseppe Diglio Dipartimento di Ingegneria, Università degli Studi del Sannio, Italy

Erasmo Mancusi Dipartimento di Ingegneria, Università degli Studi del Sannio, Italy

Francesco Pepe Dipartimento di Ingegneria, Università degli Studi del Sannio, Italy

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Piero Bareschino, Roberto Solimene, Giuseppe Diglio, Erasmo Mancusi, Francesco Pepe, and Piero Salatino, "Numerical simulation of hydrogen production by chemical looping reforming in a dual interconnected fluidized bed reactor" in "Fluidization XV", Jamal Chaouki, Ecole Polytechnique de Montreal, Canada Franco Berruti, Wewstern University, Canada Xiaotao Bi, UBC, Canada Ray Cocco, PSRI Inc. USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/fluidization_xv/97

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

Piero Bareschino, Roberto Solimene, Giuseppe Diglio, Erasmo Mancusi, Francesco Pepe, and Piero Salatino

Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale

lstituto di Ricerche sulla Combustione Consiglio Nazionale delle Ricerche

Numerical Simulation of Hydrogen Production by Chemical Looping Reforming in a Dual Interconnected Fluidized Bed Reactor

Giuseppe Diglio, Piero Bareschino, Erasmo Mancusi, Francesco Pepe

Università degli Studi del Sannio, DING – Benevento (Italy)

Roberto Solimene

Consiglio Nazionale delle Ricerche, IRC – Napoli (Italy)

Piero Salatino

Università degli Studi di Napoli Federico II, DICMaPI- Napoli (Italy)

Introduction

H₂ as fuel can contribute to reduce CO₂ emissions

Currently H₂ is produced mainly by SMR

- Highly energy demand

- Need of post-processing for CO₂ separation

CLR can overcome these issues

Numerical simulation - Which type of reactor configuration? - Which type of oxygen carrier?

Aim of the work

Mathematical Model: hypothesis

Mathematical Model: hydrodynamic model (I)

$$m_{inv} = m_{BFB} + m_{LS} + m_R + m_{D/LV}$$

$$m_{BFB} = (A_{BFB}/g) \cdot \Delta P_{BFB}$$

$$m_{LS} = (1 - \varepsilon_m) \cdot \rho_P \cdot A_{SP} \cdot (L_S - I_{SC}) + (1 - \varepsilon_m) \cdot \rho_P \cdot A_{SC} \cdot I_{SC} + (1 - \varepsilon_R) \cdot \rho_P \cdot A_{RC} \cdot h_{RC}$$

$$m_R = (A_R/g) \cdot \Delta P_R$$

$$m_{D/LV} = (1 - \varepsilon_H) \cdot \rho_P \cdot A_H \cdot L_H + (1 - \varepsilon_V) \cdot \rho_P \cdot A_D \cdot [H \cdot \eta(L_V - H) + L_V \cdot \eta^*(H - L_V)]$$

$$\left(\begin{array}{c} \frac{dm_{D/LV}}{dt} = W_R - W_S \\ \frac{dm_R}{dt} = W_{LS} - W_R \\ \frac{dm_{LS}}{dt} = W_B - W_{LS} \end{array} \right)$$

dt

Mathematical Model: hydrodynamic model (II)

Bubbling Fluidized Bed (BFB)

hp: elutriation is negligible

• <u>Mass flow rate</u> $W_B = \begin{cases} 0 \rightarrow h_{D,B} < h_B \\ W_S \rightarrow h_{D,B} \ge h_B \end{cases}$

• <u>Pressure drop</u> $\Delta P_{BFB} = \rho_P \cdot (1 - \varepsilon_D) \cdot g \cdot h_{D,B}$

Mathematical Model: hydrodynamic model (III)

Loop Seal

Loop Seal works in complete fluidization condition between Supply Chamber (SC) and Recycle Chamber (RC).

- Mass flow rate $W_{LS} = W_S$
- <u>Aeration gas flow rate</u> $Q_{LS} = Q_{SC} + Q_{RC}$
- <u>Gas "leakage" between SC and RC</u> $U_{Ls} \ge U_{mf} - \frac{W_R \cdot \varepsilon_{mf}}{A_{SC} \cdot \rho_P \cdot (1 - \varepsilon_{mf})}$

Mathematical Model: hydrodynamic model (III)

Riser

hp: 1) transition between dense and dilute phase takes place when mass flow rate approaches the value corresponding to its saturation carrying capacity; 2) the variation of voidage along the riser and with the mass flux have been neglected.

Mass flow rate

$$G_{s} = \begin{cases} G_{W} = \beta \cdot \rho_{P} \cdot (1 - \varepsilon_{mf}) \cdot U_{R} \to G_{s} \ge G_{W} \\ G_{d} = (U_{S}/h_{R}) \cdot (m_{R}/A_{R}) \to G_{s} < G_{W} \end{cases}$$

• Pressure drop

$$\Delta P_R = \rho_P \cdot (1 - \varepsilon_D) \cdot g \cdot h_D + \frac{g \cdot W_R}{A_R \cdot U_S} \cdot (h_R - h_D)$$

Mathematical Model: hydrodynamic model (III)

Cyclone

hp: Collection efficiency was assumed to be 1.

• Pressure drop
$$\Delta P_{CYC} = \rho_f \cdot K_C \cdot U_C$$

Mathematical Model: hydrodynamic model (III)

Downcomer/L-Valve

- <u>Pressure drop</u> $\frac{\Delta P_{DOW}}{H - L_E} = K_V \cdot (u_{fy} - u_{sy})$ $\frac{\Delta P_{LV}}{L_H} = K_H \cdot (u_{fx} - u_{sx})$ $\Delta P_{LV} = \frac{0.0649 \cdot \rho_P^{0.996} \cdot L_H}{D_{LV}^{0.574} \cdot d_P^{0.237}} \left(\frac{W_S}{A_R}\right)^{0.178}$
- <u>Aeration gas flow rate</u> $Q_{LV} = Q_H + Q_V$

Mathematical Model: kinetic scheme

OXIDATION REACTION	∆H⁰, kJ/mol
R1) $2Ni + O_2 \rightarrow 2NiO$	-479
NON-CATALYTIC REDUCTION REACTIONS	∆H ⁹ , kJ/mol
$R2)CH_4 + 2NiO \leftrightarrow 2Ni + 2H_2 + CO_2$	161
R3) $H_2 + NiO \leftrightarrow Ni + H_2O$	-2
$R4)CO + NiO \leftrightarrow Ni + CO_2$	-43
$R5)CH_4 + NiO \leftrightarrow Ni + 2H_2 + CO$	203

- Oxygen Carrier: **15 wt.% Ni/γ-Al₂O₃**
- Efficiency of air pre-heater: 90%
- CH₄:H₂O is **3:1**
- FR is isothermal
- AR is adiabatic

CATALYTIC REDUCTION REACTIONS	ΔH^0 , kJ/mol		
R6) $CH_4 + H_2O \stackrel{Ni}{\leftrightarrow} 3H_2 + CO$	206		
R7) $CH_4 + CO_2 \stackrel{Ni}{\leftrightarrow} 2H_2 + 2CO$	247		
R8) $CO + H_2O \stackrel{Ni}{\leftrightarrow} H_2 + CO_2$	-41		
$R9)CH_4 + Ni \stackrel{Ni}{\leftrightarrow} Ni - C + 2H_2$	74		
R10) $C + H_2 O \stackrel{Ni}{\leftrightarrow} H_2 + CO$	131		
R11)) $C + CO_2 \stackrel{Ni}{\leftrightarrow} 2CO$	172		

C. Dueso et al., Chem. Eng. J. 188 (2012) 142-154 I. Iliuta et al., AIChE J. 56 4 (2010) 1063–1079

- F. Bustamante et al., AIChE J. 50 (2004) 1028–1041
- F. Bustamante et al., AIChE J. 51 (2005) 1440– 1454

Mathematical Model: mass and energy balances

Mass Balances	Parameters				
$\frac{Dense regime/phase}{Q_{k,in} \cdot C_{j,in} - Q_{k,out} \cdot C_{j,k} + m_{sc,k} \cdot \sum_{i} r_i \cdot \alpha_j = 0}$	Operating conditions $T_{fuel}[K]$ P[Pa] $m_{inv}[kg]$ $U_B[m \cdot s^{-1}]$ $U_{-}[m \cdot s^{-1}]$	$\begin{array}{ccc} \mathbf{Pro} \\ 300 \\ 10^5 \\ 11.6 \\ 0.5 \\ 2.7 \\ \mathbf{P}_p[i] \\ \mathbf{P}_p[i] \\ \mathbf{P}_p[i] \\ \mathbf{P}_p[i] \\ \mathbf{P}_p[i] \\ \mathbf{Pro} \\ \mathbf{P}_p[i] \\ \mathbf{Pro} $	perties of bed ma [−] kg · m ^{−3}] n] −] -]	terials	$2540 \\ 2.55 \cdot 10^{-4} \\ 0.445 \\ 0.445 \\ 0.445$
$W_{k,in} \cdot C_{sc,in} - W_{k,out} \cdot C_{sc,k} + M_{sc} \cdot m_{sc,k} \cdot \sum_{i} r_i \cdot \alpha_j = 0$	$\begin{array}{c} O_{LV}[m^3 \cdot s^{-1}] \\ O_{LS}[m \cdot s^{-1}] \end{array}$	$5.5 \cdot 10^{-5} \frac{\varepsilon_B}{\varepsilon_V}[-2U_{mf} \varepsilon_H[-2U_{mf} \varepsilon_H]]$	-] -]		0.423 0.488
	GEOMETRICAL CHARACTERISTICS				
Diluted regime/Free Board	Riser		L-valve		
	$D_R[m]$	0.102	$D_{LV}[m]$	0.04	
$(1) dn_{ik} \nabla$	$n_R[m]$ BFB	5.0	$L_H[m]$ $L_T[m]$	0.4	
$\left(\frac{1}{A}\right) - \frac{j \kappa}{m} = \sum r_i \cdot \alpha_i$	$\overline{D_B}[m]$	0.12	Cyclone		
$\langle A_k \rangle a n_k \sum_{i} \gamma$	$h_{B}[m]$	2	$K_C[-]$	78	
L L	$D_{\rm c}[m]$	0.04	$A [m^2]$	0.0025	
	$L_{V}[m]$	3.6	$h_{rc}[m]$	0.2	
Energy balances $W_{k,in} \cdot \left[\sum_{sc}(1/M_{sc}) \cdot C_{sc,in} \cdot h_{sc,in}\right] - W_{k,out} \cdot \left[\sum_{sc}(1/M_{sc}) \cdot C_{sc,in} \cdot n_{j,k}^{Ri}\right] - W_{k,out} \cdot \left[\sum_{sc}(1/M_{sc}) \cdot C_{sc,in} \cdot n_{j,k}^{Ri}\right] + \sum_{i} \Delta H_{Ri} \cdot n_{j,k}^{Ri} = 0$	$M_{sc}) \cdot C_{sc,k} \cdot h_{sc,k}$	$+ Q_{k,in} \cdot $	$\sum_{j} C_{j,in} \cdot h_j$	$[in] - Q_i$	k,out •

Mathematical Model: results (I)

Fuel Reactor: effect of height of the BFB weir

 $\begin{array}{c} h_B \uparrow \gg m_{BFB} \uparrow and \ G_S \downarrow \\ & \text{so} \\ \tau_{BFB} \uparrow and \ O_2 \downarrow \end{array}$

WGS reaction rate decreases with T

Mathematical Model: results (II)

Mathematical Model: results (III)

Air Reactor: effect of inlet air pre-heat <u>exchanger</u>

Without pre-heat exchanger the temperature of inlet air is too low to drive Ni oxidation reaction

Conclusions

A simple tool to evaluate the performance of a CLR process carried out in a DIFB was developed.

The model is able to predict both main hydrodynamic variables and CLR performances.

Higher H₂ production can be achieved reducing the amount of oxygen available in the FR decreasing solid circulation rate.

If no air pre-heating is used, the temperature of air at the inlet of AR is too low to drive Ni oxidation reaction.