Fall 10-4-2015

Nanomechanical testing of ODS steels irradiated with 1 MeV/amu heavy ions

Kateryna Kornieieva
FLNR JINR, ekorneeva@jinr.ru

Vladimir Skuratov
FLNR JINR

Alexander Sohatsky
FLNR JINR

Jacques O'Connell
CHRTEM NMMU

Yuri Golovin
TSU

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/nanomechtest_v

Part of the Materials Science and Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nanomechanical Testing in Materials Research and Development V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Kateryna Kornieieva, Vladimir Skuratov, Alexander Sohatsky, Jacques O'Connell, Yuri Golovin, Victor Korenkov, and Jan Neethling

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/nanomechtest_v/93
Nanomechanical testing of ODS steels irradiated with 1 MeV/amu heavy ions

K. Kornieieva1, V. Skuratov1, A. Sohatsky2, J. O’Connell2, Y. Golovin3, V. Korenkov3, J. Neethling2

1FLNR JINR, Dubna, Russia, 2CHRTEM NMMU, Port Elizabeth, South Africa, 3TSU, Tambov, Russia

Work motivation

ODS steels, reinforced by oxide nanoparticles, are considered to be the most perspective materials for fuel cladding in Generation IV nuclear reactors due to their enhanced radiation resistance and high temperature creep resistance compared to the conventional reactor steels. One of the key questions is the study of fission fragment impact on the structure of the nanoparticles and mechanical properties of ODS steels in general.

Irradiation parameters:
- 167 MeV Xe irradiation,
- 107 MeV Kr irradiation
- fluence: 1.10-2-4.5.1015 cm-2
- dose \~0.01 dpa
- irradiation mode:
 - direct irradiation,
 - irradiation through the Al filters of variable thickness
 - irradiation through bent filter

Nanomechanical testing: ODS steels

In order to find the valid region of radiation hardening estimation, measurements were performed in continuous stiffness measurement (CSM) with maximum indentation depth of 2 μm.

According to the Nix-Gao model two size effects were observed: indentation size effect (ISE) and soft substrate effect (SSE).

Materials under study:
- ODS alloys EP-450, Cr16 (VNIINM, Moscow),
- KP4 (Kyoto University)
- copper single crystal

TEM observations

YAM particles in KP4 are more stable against the dense ionization induced by heavy ion irradiation comparably to \(Y\textsubscript{2}Ti\textsubscript{2}O\textsubscript{7}\) oxides in EP-450 ODS steel. With high fluence (>1014 cm-2) irradiation YAM particles become amorphous and can’t be identified as (Y, Al, O) compounds.

Conclusions

Nanindentation testing of the ODS alloys irradiated with 1.2 MeV/amu Xe and Kr ions strongly implies that radiation hardening level saturates at relatively low damage doses, around 0.01 dpa.

Similar dose behavior was found also for some pure metals irradiated with high energy heavy ions (Cu, Ni, Zr).

Detected radiation hardening is not associated with radiation-stimulated changes in the nanoparticle morphology.