Strategy for scaling semi-continuous downstream and integration of process analytical tools for monoclonal antibody toxicology

Darshini Shah
Merck Research Laboratories, darshini.shah@merck.com

Rebecca Chmielowski
Merck Research Laboratories, rebecca_chmielowski@merck.com

Colette Cutler
Merck Research Laboratories

Hong Li
Merck Research Laboratories

David Roush
Merck Research Laboratories

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_ii

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

STRATEGY FOR SCALING SEMI-CONTINUOUS DOWNSTREAM AND INTEGRATION OF PROCESS ANALYTICAL TOOLS FOR MONOCLONAL ANTIBODY TOXICOLOGY

Darshini Shah, Process Development & Engineering, Bioprocess Development, Merck Research Laboratories
darshini.shah@merck.com

Rebecca Chmielowski, Process Development & Engineering, Bioprocess Development, Merck Research Laboratories
rebecca_chmielowski@merck.com

Karol Lacki, Novo Nordisk

Daniel Go, GE Health Care

Collette Cutler, Process Development & Engineering, Bioprocess Development, Merck Research Laboratories

Hong Li, Process Development & Engineering, Bioprocess Development, Merck Research Laboratories

David Roush, Process Development & Engineering, Bioprocess Development, Merck Research Laboratories

Nihal Tugcu, Process Development & Engineering, Bioprocess Development, Merck Research Laboratories

Key Words: Periodic counter current chromatography (PCC), Process Analytical Tool (PAT), semi-continuous-integrated process, productivity, product quality

Currently, continuous processing for biologics is being pursued from a technology perspective in order to increase productivity and decrease cost of manufacture. Disruptive technologies, such as PCC (Periodic Counter-current Chromatography), have been researched extensively in order to reduce the bottleneck for the downstream capture chromatography step. However, there is extremely limited knowledge in how to scale these disruptive technologies for clinical and commercial manufacturing. In this presentation, we demonstrate a strategy for scaling and integration of a PCC capture step into a semi-continuous downstream process (Protein A chromatography-Viral inactivation-Filtration-Anion exchange chromatography). Harvest cell culture fluid (HCCF) feed streams ranging from 0.5 – 1 kg of various subclasses of IgG antibodies was purified using this integration process to generate material for toxicology studies. The process parameters on PCC for each mAb is matched to the process parameters in batch mode except for loading. The productivity (g/L⁻¹ hr⁻¹), product quality and yield are compared to the small scale semi-continuous operations and traditional batch mode operation. The use of PAT (Process Analytical Tools) for monitoring real time product quality and processing is also described.