TOWARDS A THEORETICAL MODEL OF SEGREGATING FLUIDIZATION OF TWO-SOLID BEDS

Bruno Formisani* Rossella Girimonte†
Vincenzino Vivacqua‡

*Università della Calabria, bruno.formisani@unical.it
†Università della Calabria
‡Università della Calabria
This paper is posted at ECI Digital Archives.
http://dc.engconfintl.org/fluidization_xiii/111
TOWARDS A THEORETICAL MODEL OF SEGREGATING FLUIDIZATION OF TWO-SOLID BEDS

Brunello Formisani, Rossella Girimonte and Vincenzino Vivacqua
Dipartimento di Ingegneria Chimica e dei Materiali, Università della Calabria,
I 87036 Arcavacata di Rende (Cosenza), Italy
T: +39-0984-496691; F: +39-0984-496655; E: bruno.formisani@unical.it

ABSTRACT

Fluidization of beds of two dissimilar solids is modelled by reworking the fundamental equations of fluidization. The approach followed illustrates the relationship between bed suspension and component segregation, as determined by differences in solid density and size. The need for empirical parameters is drastically reduced so that a unique representation of all types of mixture behaviour seems possible.

INTRODUCTION

Many industrial applications of fluidization technology (coal or biomass combustion or gasification, waste incineration, powder granulation, catalytic polymerization, etc.) employ solid mixtures made of particles which differ in density, size or shape. As a consequence of the specific reaction of each solid to the passage of the upflowing gas, these beds undergo a certain degree of separation of their components into segregated layers. The influence exerted by segregation phenomena on process performance is admittedly great and explains why the number of studies dedicated to this topic is noticeably large. Notwithstanding that, the present understanding of the mechanism of multicomponent fluidization is still unsatisfactory even when referred to the behaviour of two-solid beds.

On modelling the process of binary fluidization, the effort of many authors has been that of trying to adapt to two-solid mixtures the theory of monosolid fluidization, i.e. to develop models based on some proper definition of their minimum fluidization velocity (1-3). As discussed in a recent paper (4), however, the nature of this approach seems connected to the difficulty of setting up reliable models of segregating fluidization.

The most important difference with the case of monosolid systems is that fluidization of binary particle beds has place through a gradual process that continuously modifies the axial distribution of bed components (5-8): when, for example, gas is admitted through a homogeneous mixture of two solids (Fig.1a) and its flow rate is gradually increased, at a certain velocity value \( u_{mf} \), the initial fluidization velocity of the mixture, a mobile fluidization front establishes itself at the top of the bed while the total pressure drop starts deviating from the curve typical of the fixed state. A bubbling layer, made almost exclusively of the flotsam component, builds up in the upper region of the bed while the jetsam forms a defluidized stratum underneath. By
progressively increasing the gas flow rate, the two layers grow in thickness (Fig. 1b). The suspension process ends when the final fluidization velocity $u_f$ is reached and the final pressure drop level is first attained. Therefore, while the velocity interval between $u_d$ and $u_f$ is crossed, mixtures display their tendency to segregate whereas over $u_f$ the increase of gas velocity brings to a higher degree of component mixing (Fig. 1c), to an extent which depends on the specific nature of the binary bed.

![Fluidization mechanism of a homogeneous bed of two solids.](image)

**Fig.1** Fluidization mechanism of a homogeneous bed of two solids.

While the value of $u_d$ can be calculated once that the axial distribution of the two solids in the packed state is known, the prediction of $u_f$ is much more complicated due to the role played by segregation phenomena. To overcome this difficulty, this paper tries to address the problem of segregating fluidization in fundamental terms, by developing the approach based on the definition of the fluidization velocity interval of two-solid mixtures.

**THEORY**

As discussed in some recent works (4,9), the initial fluidization velocity of homogeneous mixtures can be predicted by rewriting the equations used for the calculation of the gas pressure drop in a monodisperse packed bed in a way suitable for accounting for the specific nature of the binary system. For instance, as far as the Carman-Kozeny’s equation holds, $u_d$ can be calculated from the relationship

$$
\frac{180 \mu_g u_{if} (1 - \varepsilon_m)^2}{d_{av}^2 \varepsilon_{mf,m}^3} = \left[ (\rho_f - \rho_g) x_f + (\rho_f - \rho_g) (1 - x_f) \right] (1 - \varepsilon_{mf,m})^3
$$

(1)

where $d_{av}$ is the Sauter mean diameter of the two-solid system, calculated as
\[
\frac{1}{d_{av}} = \frac{x_f}{d_f} + \frac{1-x_f}{d_j}
\]

(2)

and \(\varepsilon_{mf,m}\) is drawn from the experimental curve of bed voidage versus \(x_f\).

At any operating velocity intermediate to \(u_{in}\) and \(u_{ff}\), the axial distribution of mixture components is approximately that sketched in Fig.1b, with rather sharp interfaces between the three layers, whose heights are indicated as \(h_i\), \(h_j\) and \(h_m\), respectively. Since its formation at \(u_{in}\) the top layer of flotsam particles finds itself over its incipient fluidization point. A force balance on the remaining part of the bed can then be written, with the total drag force on its two sections, given by

\[
F_d = \frac{180\mu_g u \left(1 - \varepsilon_{mf,j}\right)^2}{d_j^2} Ah_j + \frac{180\mu_g u \left(1 - \varepsilon_{mf,m}\right)^2}{d_{av}^2} Ah_m
\]

(3)

that has to balance, at \(u_{in}\), its buoyant weight

\[
W = gA \left\{ \left(1 - \varepsilon_{mf,j}\right) h_j (\rho_j - \rho_g) + \left(1 - \varepsilon_{mf,m}\right) h_m \left[ (\rho_j - \rho_g)x_f + (\rho_j - \rho_g)(1-x_f) \right] \right\}
\]

(4)

By equating eqns (3) and (4) and considering that a mass balance on the jetsam component allows expressing \(h_i\) in function of \(h_m\) as

\[
h_j = (h_0 - h_m)(1-x_f) \frac{(1-\varepsilon_{mf,m})}{(1-\varepsilon_{mf,j})}
\]

(5)

the final fluidization velocity \(u_{ff}\) of the fixed portion of the system can be calculated:

\[
u_{ff} = \frac{\left\{ \left[ (\rho_j - \rho_g)x_f h_m + (\rho_j - \rho_g)(1-x_f) h_0 \right] g \right\}}{180\mu_g \left[ \left(1 - \varepsilon_{mf,m}\right) h_m + \left(1 - \varepsilon_{mf,j}\right) \left(h_0 - h_m\right)(1-x_f) \right]}
\]

(6)

In the lack of a fundamental theory capable to establish a reliable relationship between the progress of binary fluidization and the value of the height \(h_m\) of the residual homogeneous mixture, the following correlation is proposed to correlate data relevant to any type of two-solid system:

\[
\frac{h_m}{h_0} = k \left( \frac{1 - \varepsilon_{mf,m}}{1 - \varepsilon_{mf,j}} \right) \frac{\varepsilon_{mf,i}^3}{\varepsilon_{mf,m}^3} \sqrt{x_f \left(1-x_f\right)}
\]

(7)

In it \(k\) is a constant whose value, determined by a best-fit procedure between predictions of the theoretical equation (6) and experimental data of \(u_{in}\) at varying \(x_f\), is found to depend on the specific mixture considered.

Irrespective of the density of its components, whenever the binary bed is made of spheres of the same size the values of voidage relevant to the pure jetsam
component ($\varepsilon_{mf,j}$) and to the mixture ($\varepsilon_{mf,m}$) result nearly equal, so that the voidage function in the right hand side of eqn (7) may always be assumed equal to 1.

EXPERIMENTAL

Experiments were carried out in a transparent column with an internal diameter of 10 cm, on two-solid beds whose aspect ratio $h_0/D$ in the fixed state was constantly set equal to 1.7. Compressed air, whose flow rate was measured by a bench of rotameters, was admitted to the column through a plastic porous plate 4 mm thick, so that an even distribution throughout the column section was assured. A pressure tap located 1 mm above the distributor and connected to a U-tube water manometer was used to measure the total pressure drop across the bed, while three graduated scales spaced at 120° around the column wall allowed determining the average bed height at any velocity level. By means of these measurements the initial fixed-bed voidage was easily calculated from the relationship:

$$\varepsilon_0 = 1 - \frac{m}{\rho A h_0}$$

(8)

All the solids used in experiments are included in Geldart’s group B so the fixed bed voidage $\varepsilon_0$ calculated by eqn (8) has been assumed to coincide with the minimum fluidization voidage $\varepsilon_{mf}$, after verification that the error connected to this procedure is negligible.

All the materials used in the experiments are practically spherical and closely sieved; their granulometric distribution was measured by a Malvern Mastersizer 2000 laser diffractometer, while a Quantachrome helium pycnometer was used for density measurements. Table 1 reports both the properties of the various solids and those of the mixtures involved in the experimental investigation.

**Tab.1 – Properties of the experimental solids and mixtures**

<table>
<thead>
<tr>
<th>Solid</th>
<th>Density [g/cm$^3$]</th>
<th>Sieve size [µm]</th>
<th>Sauter mean diameter [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular sieves (MS)</td>
<td>1.46</td>
<td>600-710</td>
<td>631</td>
</tr>
<tr>
<td>Glass ballotini (GB)</td>
<td>2.48</td>
<td>600-710</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>250-300</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150-180</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Ceramics</td>
<td>3.76</td>
<td>500-701</td>
<td>605</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Mixture</th>
<th>$\rho_j/\rho_f$ [-]</th>
<th>$d_j/d_f$ [-]</th>
<th>$\varepsilon_{mf}$ [-]</th>
<th>$k$ [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density-segregating</td>
<td>CE605-GB593</td>
<td>1.52</td>
<td>1.02</td>
<td>0.405</td>
<td>0.39</td>
</tr>
<tr>
<td>Size-segregating</td>
<td>GB631-GB154</td>
<td>1</td>
<td>4.1</td>
<td>See Fig.2</td>
<td>0.077</td>
</tr>
<tr>
<td>Dissimilar solids</td>
<td>CE376-GB271</td>
<td>1.52</td>
<td>1.39</td>
<td>0.405</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>MS631-GB154</td>
<td>0.59</td>
<td>4.1</td>
<td>See Fig.2</td>
<td>0.14</td>
</tr>
</tbody>
</table>
VALIDATION AND DISCUSSION

As a major difference with the case of two-density mixtures, the voidage of binary beds whose components significantly differ in their diameter varies with their composition (10). Consistently with this difference of behaviour, mixtures for which the difference of size of the two solids is negligible or limited, namely CE605-GB593 and CE376-GB271, exhibit experimental values of $\varepsilon_{mf,m}$ that allow to assume this variable as practically unaffected by system composition. Accordingly, an average value of $\varepsilon_{mf,m}$, drawn from the experiments and reported in Table 1, has been used to model their fluidization pattern.

![Fig.2 Voidage of the homogeneous mixtures GB631-GB154 and MS631-GB154 at varying composition.](image)

As for the systems GB631-GB154 and MS631-GB154, instead, the experimental dependence of $\varepsilon_{mf,m}$ on $x_f$ is plotted in Fig.2. The fluidization velocity diagrams of the four experimental mixtures are plotted in Figs 3 and 4, together with the relevant model curves of $u_f$ and $u_{ff}$.

![Fig.3 Fluidization diagram of the mixtures CE605-GB593 and CE376-GB271.](image)
Unlike the trends of $u_\text{ff}$, provided by the fully theoretical equation (1), those of $u_\text{tr}$ are calculated by eqns (6) and (7), so that they make use of the values of the parameter $k$ reported in Table 1.

In particular, Fig. 3 reports, both in the experimental and the calculated version (with $k$ equal to 0.39 and 0.65 respectively), the velocity diagrams of the systems CE605-GB593 and CE376-GB271, whose components have a density ratio of 1.52 and a diameter ratio of 1.02 e 1.39 respectively, a limited variation that does not cause a dramatic change in the shape of the two diagrams.

When mixture components differ both in density and size the action of each of the two segregation factors may tend to strengthen or counterbalance that of the other. To this regard, Fig.4 illustrates the behaviour of the mixtures GB631-GB154 and MS631-GB154, whose jetsam component is, respectively, the denser or the lighter of the two solids. Notwithstanding the inversion of the jetsam-to-flotsam density ratio, the shape of the two diagrams is similar, a circumstance that reveals that also for the mixture MS631-GB154 size-segregation prevails. Both diagrams are well interpreted by the model equations, with values of the parameter $k$ equal to 0.077 and 0.14 respectively.

![Fig.4 Fluidization diagram of the mixtures GB631-GB154 and MS631-GB154.](image)

Although not yet fully predictive, the theoretical analysis proposed in the present investigation proves capable to give a correct interpretation of the fluidization properties of various categories of two-solid beds, with errors of prediction that seldom exceed 10%. That demonstrates the potentiality of the approach followed, whose essential characteristic is that of adapting the force balance equation to a more realistic representation of the binary fluidization phenomenology.

**CONCLUSIONS**

A more realistic representation of the structure assumed by any homogeneous two-solid bed during its transition to the fluidized state makes possible to analyse the process in the light of the fundamental theory of fluidization.
Whatever the nature of the mixture, i.e. that of the factors that drive the segregation process of its components, the initial and the final fluidization velocity of the binary bed, $u_{if}$ and $u_{ff}$, can be calculated with good accuracy by reworking the force balance so as to account for the change in the axial distribution of the two solids. However, while the prediction of $u_{if}$ is founded on the knowledge of the relationship between bed voidage and component concentration, that of $u_{ff}$ requires quantifying the extent of segregation at varying velocity.

To overcome this difficulty, the model proposed in this work makes use of an experimental parameter, whose value is however independent of mixture composition.

**NOTATION**

- $A$: column cross section, cm$^2$
- $D$: column bed diameter, cm
- $d$: particle diameter, µm
- $d_{av}$: Sauter mean diameter, µm
- $F_d$: drag force, g cm$^2$/s$^2$
- $g$: gravity acceleration, cm/s$^2$
- $h$: height of the particle layer, cm
- $h_0$: height of the fixed bed, cm
- $k$: parameter of eqn. 7, -
- $m$: bed mass, g
- $u_{if}$, $u_{ff}$: initial, final fluidization velocity, cm/s
- $u_{mf}$: minimum fluidization velocity, cm/s
- $x$: solid fraction, -
- $W$: buoyant weight, g cm$^2$/s$^2$
- $\varepsilon_{mf}$: minimum fluidization voidage, -
- $\varepsilon_0$: fixed bed voidage, -
- $\mu_g$: gas viscosity, g/cm s
- $\phi$: particle sphericity, -
- $\rho$: solid density, g/cm$^3$
- $\rho_g$: gas density, g/cm$^3$

**Subscripts**

- $f,j$: of the flotsam, jetsam component (or layer)
- $m$: of the homogeneous mixture

**REFERENCES**


